[Feature] Add Res2Net backbone and converted weights. (#465)

* Add Res2Net from mmdet, and change it to mmcls style.

* Align structure with official repo

* Support `deep_stem` and `avg_down` option

* Add Res2Net configs

* Add metafile&README and update model zoo

* Add unit tests

* Imporve docstring.

* Improve according to comments.
This commit is contained in:
Ma Zerun 2021-10-20 16:34:22 +08:00 committed by GitHub
parent f68f17e9bb
commit 77a3834531
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
17 changed files with 605 additions and 5 deletions

View File

@ -0,0 +1,18 @@
model = dict(
type='ImageClassifier',
backbone=dict(
type='Res2Net',
depth=101,
scales=4,
base_width=26,
deep_stem=False,
avg_down=False,
),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2048,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))

View File

@ -0,0 +1,18 @@
model = dict(
type='ImageClassifier',
backbone=dict(
type='Res2Net',
depth=50,
scales=8,
base_width=14,
deep_stem=False,
avg_down=False,
),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2048,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))

View File

@ -0,0 +1,18 @@
model = dict(
type='ImageClassifier',
backbone=dict(
type='Res2Net',
depth=50,
scales=4,
base_width=26,
deep_stem=False,
avg_down=False,
),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2048,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))

View File

@ -0,0 +1,18 @@
model = dict(
type='ImageClassifier',
backbone=dict(
type='Res2Net',
depth=50,
scales=6,
base_width=26,
deep_stem=False,
avg_down=False,
),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2048,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))

View File

@ -0,0 +1,18 @@
model = dict(
type='ImageClassifier',
backbone=dict(
type='Res2Net',
depth=50,
scales=8,
base_width=26,
deep_stem=False,
avg_down=False,
),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2048,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))

View File

@ -0,0 +1,18 @@
model = dict(
type='ImageClassifier',
backbone=dict(
type='Res2Net',
depth=50,
scales=2,
base_width=48,
deep_stem=False,
avg_down=False,
),
neck=dict(type='GlobalAveragePooling'),
head=dict(
type='LinearClsHead',
num_classes=1000,
in_channels=2048,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),
))

30
configs/res2net/README.md Normal file
View File

@ -0,0 +1,30 @@
# Res2Net: A New Multi-scale Backbone Architecture
<!-- {Res2Net} -->
## Introduction
<!-- [ALGORITHM] -->
```latex
@article{gao2019res2net,
title={Res2Net: A New Multi-scale Backbone Architecture},
author={Gao, Shang-Hua and Cheng, Ming-Ming and Zhao, Kai and Zhang, Xin-Yu and Yang, Ming-Hsuan and Torr, Philip},
journal={IEEE TPAMI},
year={2021},
doi={10.1109/TPAMI.2019.2938758},
}
```
## Pretrain model
The pre-trained models are converted from [official repo](https://github.com/Res2Net/Res2Net-PretrainedModels).
### ImageNet 1k
| Model | resolution | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Download |
|:---------------------:|:-----------:|:---------:|:---------:|:---------:|:---------:|:--------:|
| Res2Net-50-14w-8s\* | 224x224 | 25.06 | 4.22 | 78.14 | 93.85 | [model](https://download.openmmlab.com/mmclassification/v0/res2net/res2net50-w14-s8_3rdparty_8xb32_in1k_20210927-bc967bf1.pth)|
| Res2Net-50-26w-8s\* | 224x224 | 48.40 | 8.39 | 79.20 | 94.36 | [model](https://download.openmmlab.com/mmclassification/v0/res2net/res2net50-w26-s8_3rdparty_8xb32_in1k_20210927-f547a94b.pth)|
| Res2Net-101-26w-4s\* | 224x224 | 45.21 | 8.12 | 79.19 | 94.44 | [model](https://download.openmmlab.com/mmclassification/v0/res2net/res2net101-w26-s4_3rdparty_8xb32_in1k_20210927-870b6c36.pth)|
*Models with \* are converted from other repos.*

View File

@ -0,0 +1,67 @@
Collections:
- Name: Res2Net
Metadata:
Training Data: ImageNet-1k
Training Techniques:
- SGD with Momentum
- Weight Decay
Architecture:
- Batch Normalization
- Convolution
- Global Average Pooling
- ReLU
- Res2Net Block
Paper:
Title: 'Res2Net: A New Multi-scale Backbone Architecture'
URL: https://arxiv.org/pdf/1904.01169.pdf
README: configs/res2net/README.md
Models:
- Name: res2net50-w14-s8_3rdparty_8xb32_in1k
Metadata:
FLOPs: 4220000000
Parameters: 25060000
In Collection: Res2Net
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 78.14
Top 5 Accuracy: 93.85
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/res2net/res2net50-w14-s8_3rdparty_8xb32_in1k_20210927-bc967bf1.pth
Converted From:
Weights: https://1drv.ms/u/s!AkxDDnOtroRPdOTqhF8ne_aakDI?e=EVb8Ri
Code: https://github.com/Res2Net/Res2Net-PretrainedModels/blob/master/res2net.py#L221
Config: configs/res2net/res2net50-w14-s8_8xb32_in1k.py
- Name: res2net50-w26-s8_3rdparty_8xb32_in1k
Metadata:
FLOPs: 8390000000
Parameters: 48400000
In Collection: Res2Net
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 79.20
Top 5 Accuracy: 94.36
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/res2net/res2net50-w26-s8_3rdparty_8xb32_in1k_20210927-f547a94b.pth
Converted From:
Weights: https://1drv.ms/u/s!AkxDDnOtroRPdTrAd_Afzc26Z7Q?e=slYqsR
Code: https://github.com/Res2Net/Res2Net-PretrainedModels/blob/master/res2net.py#L201
Config: configs/res2net/res2net50-w26-s8_8xb32_in1k.py
- Name: res2net101-w26-s4_3rdparty_8xb32_in1k
Metadata:
FLOPs: 8120000000
Parameters: 45210000
In Collection: Res2Net
Results:
- Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 79.19
Top 5 Accuracy: 94.44
Task: Image Classification
Weights: https://download.openmmlab.com/mmclassification/v0/res2net/res2net101-w26-s4_3rdparty_8xb32_in1k_20210927-870b6c36.pth
Converted From:
Weights: https://1drv.ms/u/s!AkxDDnOtroRPcJRgTLkahL0cFYw?e=nwbnic
Code: https://github.com/Res2Net/Res2Net-PretrainedModels/blob/master/res2net.py#L181
Config: configs/res2net/res2net101-w26-s4_8xb32_in1k.py

View File

@ -0,0 +1,5 @@
_base_ = [
'../_base_/models/res2net101-w26-s4.py',
'../_base_/datasets/imagenet_bs32_pil_resize.py',
'../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
]

View File

@ -0,0 +1,5 @@
_base_ = [
'../_base_/models/res2net50-w14-s8.py',
'../_base_/datasets/imagenet_bs32_pil_resize.py',
'../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
]

View File

@ -0,0 +1,5 @@
_base_ = [
'../_base_/models/res2net50-w26-s8.py',
'../_base_/datasets/imagenet_bs32_pil_resize.py',
'../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
]

View File

@ -32,6 +32,9 @@ The ResNet family models below are trained by standard data augmentations, i.e.,
| ResNet-50 | 25.56 | 4.12 | 76.55 | 93.15 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet50_b32x8_imagenet.py) | [model](https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_batch256_imagenet_20200708-cfb998bf.pth) &#124; [log](https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_batch256_imagenet_20200708-cfb998bf.log.json) |
| ResNet-101 | 44.55 | 7.85 | 78.18 | 94.03 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet101_b32x8_imagenet.py) | [model](https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_batch256_imagenet_20200708-753f3608.pth) &#124; [log](https://download.openmmlab.com/mmclassification/v0/resnet/resnet101_batch256_imagenet_20200708-753f3608.log.json) |
| ResNet-152 | 60.19 | 11.58 | 78.63 | 94.16 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet152_b32x8_imagenet.py) | [model](https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_batch256_imagenet_20200708-ec25b1f9.pth) &#124; [log](https://download.openmmlab.com/mmclassification/v0/resnet/resnet152_batch256_imagenet_20200708-ec25b1f9.log.json) |
| Res2Net-50-14w-8s\* | 25.06 | 4.22 | 78.14 | 93.85 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/res2net/res2net50-w14-s8_8xb32_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/res2net/res2net50-w14-s8_3rdparty_8xb32_in1k_20210927-bc967bf1.pth) &#124; [log]()|
| Res2Net-50-26w-8s\* | 48.40 | 8.39 | 79.20 | 94.36 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/res2net/res2net50-w26-s8_8xb32_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/res2net/res2net50-w26-s8_3rdparty_8xb32_in1k_20210927-f547a94b.pth) &#124; [log]()|
| Res2Net-101-26w-4s\* | 45.21 | 8.12 | 79.19 | 94.44 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/res2net/res2net101-w26-s4_8xb32_in1k.py) | [model](https://download.openmmlab.com/mmclassification/v0/res2net/res2net101-w26-s4_3rdparty_8xb32_in1k_20210927-870b6c36.pth) &#124; [log]()|
| ResNeSt-50\* | 27.48 | 5.41 | 81.13 | 95.59 | | [model](https://download.openmmlab.com/mmclassification/v0/resnest/resnest50_imagenet_converted-1ebf0afe.pth) &#124; [log]() |
| ResNeSt-101\* | 48.28 | 10.27 | 82.32 | 96.24 | | [model](https://download.openmmlab.com/mmclassification/v0/resnest/resnest101_imagenet_converted-032caa52.pth) &#124; [log]() |
| ResNeSt-200\* | 70.2 | 17.53 | 82.41 | 96.22 | | [model](https://download.openmmlab.com/mmclassification/v0/resnest/resnest200_imagenet_converted-581a60f2.pth) &#124; [log]() |

View File

@ -5,6 +5,7 @@ from .mobilenet_v2 import MobileNetV2
from .mobilenet_v3 import MobileNetV3
from .regnet import RegNet
from .repvgg import RepVGG
from .res2net import Res2Net
from .resnest import ResNeSt
from .resnet import ResNet, ResNetV1d
from .resnet_cifar import ResNet_CIFAR
@ -23,5 +24,5 @@ __all__ = [
'LeNet5', 'AlexNet', 'VGG', 'RegNet', 'ResNet', 'ResNeXt', 'ResNetV1d',
'ResNeSt', 'ResNet_CIFAR', 'SEResNet', 'SEResNeXt', 'ShuffleNetV1',
'ShuffleNetV2', 'MobileNetV2', 'MobileNetV3', 'VisionTransformer',
'SwinTransformer', 'TNT', 'RepVGG', 'TIMMBackbone'
'SwinTransformer', 'TNT', 'TIMMBackbone', 'Res2Net', 'RepVGG'
]

View File

@ -0,0 +1,306 @@
# Copyright (c) OpenMMLab. All rights reserved.
import math
import torch
import torch.nn as nn
import torch.utils.checkpoint as cp
from mmcv.cnn import build_conv_layer, build_norm_layer
from mmcv.runner import ModuleList, Sequential
from ..builder import BACKBONES
from .resnet import Bottleneck as _Bottleneck
from .resnet import ResNet
class Bottle2neck(_Bottleneck):
expansion = 4
def __init__(self,
in_channels,
out_channels,
scales=4,
base_width=26,
base_channels=64,
stage_type='normal',
**kwargs):
"""Bottle2neck block for Res2Net."""
super(Bottle2neck, self).__init__(in_channels, out_channels, **kwargs)
assert scales > 1, 'Res2Net degenerates to ResNet when scales = 1.'
mid_channels = out_channels // self.expansion
width = int(math.floor(mid_channels * (base_width / base_channels)))
self.norm1_name, norm1 = build_norm_layer(
self.norm_cfg, width * scales, postfix=1)
self.norm3_name, norm3 = build_norm_layer(
self.norm_cfg, self.out_channels, postfix=3)
self.conv1 = build_conv_layer(
self.conv_cfg,
self.in_channels,
width * scales,
kernel_size=1,
stride=self.conv1_stride,
bias=False)
self.add_module(self.norm1_name, norm1)
if stage_type == 'stage':
self.pool = nn.AvgPool2d(
kernel_size=3, stride=self.conv2_stride, padding=1)
self.convs = ModuleList()
self.bns = ModuleList()
for i in range(scales - 1):
self.convs.append(
build_conv_layer(
self.conv_cfg,
width,
width,
kernel_size=3,
stride=self.conv2_stride,
padding=self.dilation,
dilation=self.dilation,
bias=False))
self.bns.append(
build_norm_layer(self.norm_cfg, width, postfix=i + 1)[1])
self.conv3 = build_conv_layer(
self.conv_cfg,
width * scales,
self.out_channels,
kernel_size=1,
bias=False)
self.add_module(self.norm3_name, norm3)
self.stage_type = stage_type
self.scales = scales
self.width = width
delattr(self, 'conv2')
delattr(self, self.norm2_name)
def forward(self, x):
"""Forward function."""
def _inner_forward(x):
identity = x
out = self.conv1(x)
out = self.norm1(out)
out = self.relu(out)
spx = torch.split(out, self.width, 1)
sp = self.convs[0](spx[0].contiguous())
sp = self.relu(self.bns[0](sp))
out = sp
for i in range(1, self.scales - 1):
if self.stage_type == 'stage':
sp = spx[i]
else:
sp = sp + spx[i]
sp = self.convs[i](sp.contiguous())
sp = self.relu(self.bns[i](sp))
out = torch.cat((out, sp), 1)
if self.stage_type == 'normal' and self.scales != 1:
out = torch.cat((out, spx[self.scales - 1]), 1)
elif self.stage_type == 'stage' and self.scales != 1:
out = torch.cat((out, self.pool(spx[self.scales - 1])), 1)
out = self.conv3(out)
out = self.norm3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
return out
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
out = self.relu(out)
return out
class Res2Layer(Sequential):
"""Res2Layer to build Res2Net style backbone.
Args:
block (nn.Module): block used to build ResLayer.
inplanes (int): inplanes of block.
planes (int): planes of block.
num_blocks (int): number of blocks.
stride (int): stride of the first block. Default: 1
avg_down (bool): Use AvgPool instead of stride conv when
downsampling in the bottle2neck. Defaults to True.
conv_cfg (dict): dictionary to construct and config conv layer.
Default: None
norm_cfg (dict): dictionary to construct and config norm layer.
Default: dict(type='BN')
scales (int): Scales used in Res2Net. Default: 4
base_width (int): Basic width of each scale. Default: 26
"""
def __init__(self,
block,
in_channels,
out_channels,
num_blocks,
stride=1,
avg_down=True,
conv_cfg=None,
norm_cfg=dict(type='BN'),
scales=4,
base_width=26,
**kwargs):
self.block = block
downsample = None
if stride != 1 or in_channels != out_channels:
if avg_down:
downsample = nn.Sequential(
nn.AvgPool2d(
kernel_size=stride,
stride=stride,
ceil_mode=True,
count_include_pad=False),
build_conv_layer(
conv_cfg,
in_channels,
out_channels,
kernel_size=1,
stride=1,
bias=False),
build_norm_layer(norm_cfg, out_channels)[1],
)
else:
downsample = nn.Sequential(
build_conv_layer(
conv_cfg,
in_channels,
out_channels,
kernel_size=1,
stride=stride,
bias=False),
build_norm_layer(norm_cfg, out_channels)[1],
)
layers = []
layers.append(
block(
in_channels=in_channels,
out_channels=out_channels,
stride=stride,
downsample=downsample,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
scales=scales,
base_width=base_width,
stage_type='stage',
**kwargs))
in_channels = out_channels
for _ in range(1, num_blocks):
layers.append(
block(
in_channels=in_channels,
out_channels=out_channels,
stride=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
scales=scales,
base_width=base_width,
**kwargs))
super(Res2Layer, self).__init__(*layers)
@BACKBONES.register_module()
class Res2Net(ResNet):
"""Res2Net backbone.
A PyTorch implement of : `Res2Net: A New Multi-scale Backbone
Architecture <https://arxiv.org/pdf/1904.01169.pdf>`_
Args:
depth (int): Depth of Res2Net, choose from {50, 101, 152}.
scales (int): Scales used in Res2Net. Defaults to 4.
base_width (int): Basic width of each scale. Defaults to 26.
in_channels (int): Number of input image channels. Defaults to 3.
num_stages (int): Number of Res2Net stages. Defaults to 4.
strides (Sequence[int]): Strides of the first block of each stage.
Defaults to ``(1, 2, 2, 2)``.
dilations (Sequence[int]): Dilation of each stage.
Defaults to ``(1, 1, 1, 1)``.
out_indices (Sequence[int]): Output from which stages.
Defaults to ``(3, )``.
style (str): "pytorch" or "caffe". If set to "pytorch", the stride-two
layer is the 3x3 conv layer, otherwise the stride-two layer is
the first 1x1 conv layer. Defaults to "pytorch".
deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv.
Defaults to True.
avg_down (bool): Use AvgPool instead of stride conv when
downsampling in the bottle2neck. Defaults to True.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters. Defaults to -1.
norm_cfg (dict): Dictionary to construct and config norm layer.
Defaults to ``dict(type='BN', requires_grad=True)``.
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Defaults to False.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Defaults to False.
zero_init_residual (bool): Whether to use zero init for last norm layer
in resblocks to let them behave as identity. Defaults to True.
init_cfg (dict or list[dict], optional): Initialization config dict.
Defaults to None.
Example:
>>> from mmcls.models import Res2Net
>>> import torch
>>> model = Res2Net(depth=50,
... scales=4,
... base_width=26,
... out_indices=(0, 1, 2, 3))
>>> model.eval()
>>> inputs = torch.rand(1, 3, 32, 32)
>>> level_outputs = model.forward(inputs)
>>> for level_out in level_outputs:
... print(tuple(level_out.shape))
(1, 256, 8, 8)
(1, 512, 4, 4)
(1, 1024, 2, 2)
(1, 2048, 1, 1)
"""
arch_settings = {
50: (Bottle2neck, (3, 4, 6, 3)),
101: (Bottle2neck, (3, 4, 23, 3)),
152: (Bottle2neck, (3, 8, 36, 3))
}
def __init__(self,
scales=4,
base_width=26,
style='pytorch',
deep_stem=True,
avg_down=True,
init_cfg=None,
**kwargs):
self.scales = scales
self.base_width = base_width
super(Res2Net, self).__init__(
style=style,
deep_stem=deep_stem,
avg_down=avg_down,
init_cfg=init_cfg,
**kwargs)
def make_res_layer(self, **kwargs):
return Res2Layer(
scales=self.scales,
base_width=self.base_width,
base_channels=self.base_channels,
**kwargs)

View File

@ -396,10 +396,8 @@ class ResNet(BaseBackbone):
Default: ``(1, 2, 2, 2)``.
dilations (Sequence[int]): Dilation of each stage.
Default: ``(1, 1, 1, 1)``.
out_indices (Sequence[int]): Output from which stages. If only one
stage is specified, a single tensor (feature map) is returned,
otherwise multiple stages are specified, a tuple of tensors will
be returned. Default: ``(3, )``.
out_indices (Sequence[int]): Output from which stages.
Default: ``(3, )``.
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
layer is the 3x3 conv layer, otherwise the stride-two layer is
the first 1x1 conv layer.

View File

@ -2,6 +2,7 @@ Import:
- configs/fp16/metafile.yml
- configs/mobilenet_v2/metafile.yml
- configs/resnet/metafile.yml
- configs/res2net/metafile.yml
- configs/resnext/metafile.yml
- configs/seresnet/metafile.yml
- configs/shufflenet_v1/metafile.yml

View File

@ -0,0 +1,71 @@
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmcv.utils.parrots_wrapper import _BatchNorm
from mmcls.models.backbones import Res2Net
def check_norm_state(modules, train_state):
"""Check if norm layer is in correct train state."""
for mod in modules:
if isinstance(mod, _BatchNorm):
if mod.training != train_state:
return False
return True
def test_resnet_cifar():
# Only support depth 50, 101 and 152
with pytest.raises(KeyError):
Res2Net(depth=18)
# test the feature map size when depth is 50
# and deep_stem=True, avg_down=True
model = Res2Net(
depth=50, out_indices=(0, 1, 2, 3), deep_stem=True, avg_down=True)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model.stem(imgs)
assert feat.shape == (1, 64, 112, 112)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == (1, 256, 56, 56)
assert feat[1].shape == (1, 512, 28, 28)
assert feat[2].shape == (1, 1024, 14, 14)
assert feat[3].shape == (1, 2048, 7, 7)
# test the feature map size when depth is 101
# and deep_stem=False, avg_down=False
model = Res2Net(
depth=101, out_indices=(0, 1, 2, 3), deep_stem=False, avg_down=False)
model.init_weights()
model.train()
imgs = torch.randn(1, 3, 224, 224)
feat = model.conv1(imgs)
assert feat.shape == (1, 64, 112, 112)
feat = model(imgs)
assert len(feat) == 4
assert feat[0].shape == (1, 256, 56, 56)
assert feat[1].shape == (1, 512, 28, 28)
assert feat[2].shape == (1, 1024, 14, 14)
assert feat[3].shape == (1, 2048, 7, 7)
# Test Res2Net with first stage frozen
frozen_stages = 1
model = Res2Net(depth=50, frozen_stages=frozen_stages, deep_stem=False)
model.init_weights()
model.train()
assert check_norm_state([model.norm1], False)
for param in model.conv1.parameters():
assert param.requires_grad is False
for i in range(1, frozen_stages + 1):
layer = getattr(model, f'layer{i}')
for mod in layer.modules():
if isinstance(mod, _BatchNorm):
assert mod.training is False
for param in layer.parameters():
assert param.requires_grad is False