Add AlexNet and LeNet5
parent
85399b397d
commit
8995e16834
|
@ -1,3 +1,5 @@
|
|||
from .alexnet import AlexNet
|
||||
from .lenet import LeNet5
|
||||
from .mobilenet_v2 import MobileNetV2
|
||||
from .mobilenet_v3 import MobileNetv3
|
||||
from .regnet import RegNet
|
||||
|
@ -9,6 +11,7 @@ from .shufflenet_v1 import ShuffleNetV1
|
|||
from .shufflenet_v2 import ShuffleNetV2
|
||||
|
||||
__all__ = [
|
||||
'RegNet', 'ResNet', 'ResNeXt', 'ResNetV1d', 'ResNetV1d', 'SEResNet',
|
||||
'SEResNeXt', 'ShuffleNetV1', 'ShuffleNetV2', 'MobileNetV2', 'MobileNetv3'
|
||||
'LeNet5', 'AlexNet', 'RegNet', 'ResNet', 'ResNeXt', 'ResNetV1d',
|
||||
'ResNetV1d', 'SEResNet', 'SEResNeXt', 'ShuffleNetV1', 'ShuffleNetV2',
|
||||
'MobileNetV2', 'MobileNetv3'
|
||||
]
|
||||
|
|
|
@ -0,0 +1,55 @@
|
|||
import torch.nn as nn
|
||||
|
||||
from ..builder import BACKBONES
|
||||
from .base_backbone import BaseBackbone
|
||||
|
||||
|
||||
@BACKBONES.register_module()
|
||||
class AlexNet(BaseBackbone):
|
||||
"""`AlexNet <https://en.wikipedia.org/wiki/AlexNet>`_ backbone.
|
||||
|
||||
The input for AlexNet is a 256x256 RGB image.
|
||||
|
||||
Args:
|
||||
num_classes (int): number of classes for classification.
|
||||
The default value is -1, which uses the backbone as
|
||||
a feature extractor without the top classifier.
|
||||
"""
|
||||
|
||||
def __init__(self, num_classes=-1):
|
||||
super(AlexNet, self).__init__()
|
||||
self.num_classes = num_classes
|
||||
self.features = nn.Sequential(
|
||||
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.MaxPool2d(kernel_size=3, stride=2),
|
||||
nn.Conv2d(64, 192, kernel_size=5, padding=2),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.MaxPool2d(kernel_size=3, stride=2),
|
||||
nn.Conv2d(192, 384, kernel_size=3, padding=1),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv2d(384, 256, kernel_size=3, padding=1),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv2d(256, 256, kernel_size=3, padding=1),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.MaxPool2d(kernel_size=3, stride=2),
|
||||
)
|
||||
if self.num_classes > 0:
|
||||
self.classifier = nn.Sequential(
|
||||
nn.Dropout(),
|
||||
nn.Linear(256 * 6 * 6, 4096),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Dropout(),
|
||||
nn.Linear(4096, 4096),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Linear(4096, num_classes),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
x = self.features(x)
|
||||
if self.num_classes > 0:
|
||||
x = x.view(x.size(0), 256 * 6 * 6)
|
||||
x = self.classifier(x)
|
||||
|
||||
return x
|
|
@ -0,0 +1,41 @@
|
|||
import torch.nn as nn
|
||||
|
||||
from ..builder import BACKBONES
|
||||
from .base_backbone import BaseBackbone
|
||||
|
||||
|
||||
@BACKBONES.register_module()
|
||||
class LeNet5(BaseBackbone):
|
||||
"""`LeNet5 <https://en.wikipedia.org/wiki/LeNet>`_ backbone.
|
||||
|
||||
The input for LeNet-5 is a 32×32 grayscale image.
|
||||
|
||||
Args:
|
||||
num_classes (int): number of classes for classification.
|
||||
The default value is -1, which uses the backbone as
|
||||
a feature extractor without the top classifier.
|
||||
"""
|
||||
|
||||
def __init__(self, num_classes=-1):
|
||||
super(LeNet5, self).__init__()
|
||||
self.num_classes = num_classes
|
||||
self.features = nn.Sequential(
|
||||
nn.Conv2d(1, 6, kernel_size=5, stride=1), nn.Tanh(),
|
||||
nn.AvgPool2d(kernel_size=2),
|
||||
nn.Conv2d(6, 16, kernel_size=5, stride=1), nn.Tanh(),
|
||||
nn.AvgPool2d(kernel_size=2),
|
||||
nn.Conv2d(16, 120, kernel_size=5, stride=1), nn.Tanh())
|
||||
if self.num_classes > 0:
|
||||
self.classifier = nn.Sequential(
|
||||
nn.Linear(120, 84),
|
||||
nn.Tanh(),
|
||||
nn.Linear(84, num_classes),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
|
||||
x = self.features(x)
|
||||
if self.num_classes > 0:
|
||||
x = self.classifier(x.squeeze())
|
||||
|
||||
return x
|
Loading…
Reference in New Issue