Add AlexNet and LeNet5

pull/2/head
yanglei 2020-07-08 10:48:08 +08:00 committed by yl-1993
parent 85399b397d
commit 8995e16834
3 changed files with 101 additions and 2 deletions

View File

@ -1,3 +1,5 @@
from .alexnet import AlexNet
from .lenet import LeNet5
from .mobilenet_v2 import MobileNetV2
from .mobilenet_v3 import MobileNetv3
from .regnet import RegNet
@ -9,6 +11,7 @@ from .shufflenet_v1 import ShuffleNetV1
from .shufflenet_v2 import ShuffleNetV2
__all__ = [
'RegNet', 'ResNet', 'ResNeXt', 'ResNetV1d', 'ResNetV1d', 'SEResNet',
'SEResNeXt', 'ShuffleNetV1', 'ShuffleNetV2', 'MobileNetV2', 'MobileNetv3'
'LeNet5', 'AlexNet', 'RegNet', 'ResNet', 'ResNeXt', 'ResNetV1d',
'ResNetV1d', 'SEResNet', 'SEResNeXt', 'ShuffleNetV1', 'ShuffleNetV2',
'MobileNetV2', 'MobileNetv3'
]

View File

@ -0,0 +1,55 @@
import torch.nn as nn
from ..builder import BACKBONES
from .base_backbone import BaseBackbone
@BACKBONES.register_module()
class AlexNet(BaseBackbone):
"""`AlexNet <https://en.wikipedia.org/wiki/AlexNet>`_ backbone.
The input for AlexNet is a 256x256 RGB image.
Args:
num_classes (int): number of classes for classification.
The default value is -1, which uses the backbone as
a feature extractor without the top classifier.
"""
def __init__(self, num_classes=-1):
super(AlexNet, self).__init__()
self.num_classes = num_classes
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 192, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(192, 384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
)
if self.num_classes > 0:
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(256 * 6 * 6, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, num_classes),
)
def forward(self, x):
x = self.features(x)
if self.num_classes > 0:
x = x.view(x.size(0), 256 * 6 * 6)
x = self.classifier(x)
return x

View File

@ -0,0 +1,41 @@
import torch.nn as nn
from ..builder import BACKBONES
from .base_backbone import BaseBackbone
@BACKBONES.register_module()
class LeNet5(BaseBackbone):
"""`LeNet5 <https://en.wikipedia.org/wiki/LeNet>`_ backbone.
The input for LeNet-5 is a 32×32 grayscale image.
Args:
num_classes (int): number of classes for classification.
The default value is -1, which uses the backbone as
a feature extractor without the top classifier.
"""
def __init__(self, num_classes=-1):
super(LeNet5, self).__init__()
self.num_classes = num_classes
self.features = nn.Sequential(
nn.Conv2d(1, 6, kernel_size=5, stride=1), nn.Tanh(),
nn.AvgPool2d(kernel_size=2),
nn.Conv2d(6, 16, kernel_size=5, stride=1), nn.Tanh(),
nn.AvgPool2d(kernel_size=2),
nn.Conv2d(16, 120, kernel_size=5, stride=1), nn.Tanh())
if self.num_classes > 0:
self.classifier = nn.Sequential(
nn.Linear(120, 84),
nn.Tanh(),
nn.Linear(84, num_classes),
)
def forward(self, x):
x = self.features(x)
if self.num_classes > 0:
x = self.classifier(x.squeeze())
return x