commit
8c63bb55a5
|
@ -33,6 +33,8 @@
|
|||
[🆕 Update News](https://mmclassification.readthedocs.io/en/latest/changelog.html) |
|
||||
[🤔 Reporting Issues](https://github.com/open-mmlab/mmclassification/issues/new/choose)
|
||||
|
||||
:point_right: **MMClassification 1.0 branch is in trial, welcome every to [try it](https://github.com/open-mmlab/mmclassification/tree/1.x) and [discuss with us](https://github.com/open-mmlab/mmclassification/discussions)!** :point_left:
|
||||
|
||||
</div>
|
||||
|
||||
## Introduction
|
||||
|
@ -62,6 +64,11 @@ The MMClassification 1.0 has released! It's still unstable and in release candid
|
|||
to [the 1.x branch](https://github.com/open-mmlab/mmclassification/tree/1.x) and discuss it with us in
|
||||
[the discussion](https://github.com/open-mmlab/mmclassification/discussions).
|
||||
|
||||
v0.24.1 was released in 31/10/2022.
|
||||
Highlights of the new version:
|
||||
|
||||
- Support HUAWEI Ascend device.
|
||||
|
||||
v0.24.0 was released in 30/9/2022.
|
||||
Highlights of the new version:
|
||||
|
||||
|
|
|
@ -33,6 +33,10 @@
|
|||
[🆕 更新日志](https://mmclassification.readthedocs.io/en/latest/changelog.html) |
|
||||
[🤔 报告问题](https://github.com/open-mmlab/mmclassification/issues/new/choose)
|
||||
|
||||
:point_right: **MMClassification 1.0 版本即将正式发布,欢迎大家 [试用](https://github.com/open-mmlab/mmclassification/tree/1.x) 并 [参与讨论](https://github.com/open-mmlab/mmclassification/discussions)!** :point_left:
|
||||
|
||||
</div>
|
||||
|
||||
</div>
|
||||
|
||||
## Introduction
|
||||
|
@ -59,6 +63,10 @@ MMClassification 是一款基于 PyTorch 的开源图像分类工具箱,是 [O
|
|||
|
||||
MMClassification 1.0 已经发布!目前仍在公测中,如果希望试用,请切换到 [1.x 分支](https://github.com/open-mmlab/mmclassification/tree/1.x),并在[讨论版](https://github.com/open-mmlab/mmclassification/discussions) 参加开发讨论!
|
||||
|
||||
2022/10/31 发布了 v0.24.1 版本
|
||||
|
||||
- 支持了华为昇腾 NPU 设备。
|
||||
|
||||
2022/9/30 发布了 v0.24.0 版本
|
||||
|
||||
- 支持了 **HorNet**,**EfficientFormerm**,**SwinTransformer V2**,**MViT** 等主干网络。
|
||||
|
@ -66,8 +74,6 @@ MMClassification 1.0 已经发布!目前仍在公测中,如果希望试用
|
|||
|
||||
2022/5/1 发布了 v0.23.0 版本
|
||||
|
||||
新版本亮点:
|
||||
|
||||
- 支持了 **DenseNet**,**VAN** 和 **PoolFormer** 三个网络,并提供了预训练模型。
|
||||
- 支持在 IPU 上进行训练。
|
||||
- 更新了 API 文档的样式,更方便查阅,[欢迎查阅](https://mmclassification.readthedocs.io/en/master/api/models.html)。
|
||||
|
|
|
@ -3,8 +3,8 @@ ARG CUDA="10.2"
|
|||
ARG CUDNN="7"
|
||||
FROM pytorch/pytorch:${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel
|
||||
|
||||
ARG MMCV="1.6.2"
|
||||
ARG MMCLS="0.24.0"
|
||||
ARG MMCV="1.7.0"
|
||||
ARG MMCLS="0.24.1"
|
||||
|
||||
ENV PYTHONUNBUFFERED TRUE
|
||||
|
||||
|
|
|
@ -9,12 +9,19 @@ pre {
|
|||
white-space: pre;
|
||||
}
|
||||
|
||||
article.pytorch-article .section :not(dt) > code {
|
||||
article.pytorch-article section code {
|
||||
padding: .2em .4em;
|
||||
background-color: #f3f4f7;
|
||||
border-radius: 5px;
|
||||
}
|
||||
|
||||
table.colwidths-auto td {
|
||||
/* Disable the change in tables */
|
||||
article.pytorch-article section table code {
|
||||
padding: unset;
|
||||
background-color: unset;
|
||||
border-radius: unset;
|
||||
}
|
||||
|
||||
table.autosummary td {
|
||||
width: 50%
|
||||
}
|
||||
|
|
|
@ -1,5 +1,15 @@
|
|||
# Changelog
|
||||
|
||||
## v0.24.1(31/10/2022)
|
||||
|
||||
### New Features
|
||||
|
||||
- Support mmcls with NPU backend. ([#1072](https://github.com/open-mmlab/mmclassification/pull/1072))
|
||||
|
||||
### Bug Fixes
|
||||
|
||||
- Fix performance issue in convnext DDP train. ([#1098](https://github.com/open-mmlab/mmclassification/pull/1098))
|
||||
|
||||
## v0.24.0(30/9/2022)
|
||||
|
||||
### Highlights
|
||||
|
|
|
@ -48,7 +48,6 @@ extensions = [
|
|||
'sphinx.ext.intersphinx',
|
||||
'sphinx.ext.napoleon',
|
||||
'sphinx.ext.viewcode',
|
||||
'sphinx_markdown_tables',
|
||||
'myst_parser',
|
||||
'sphinx_copybutton',
|
||||
]
|
||||
|
|
|
@ -0,0 +1,34 @@
|
|||
# NPU (HUAWEI Ascend)
|
||||
|
||||
## Usage
|
||||
|
||||
Please install MMCV with NPU device support according to {external+mmcv:doc}`the tutorial <get_started/build>`.
|
||||
|
||||
Here we use 8 NPUs on your computer to train the model with the following command:
|
||||
|
||||
```shell
|
||||
bash tools/dist_train.sh configs/cspnet/resnet50_8xb32_in1k.py 8 --device npu
|
||||
```
|
||||
|
||||
Also, you can use only one NPU to trian the model with the following command:
|
||||
|
||||
```shell
|
||||
python tools/train.py configs/cspnet/resnet50_8xb32_in1k.py --device npu
|
||||
```
|
||||
|
||||
## Verified Models
|
||||
|
||||
| Model | Top-1 (%) | Top-5 (%) | Config | Download |
|
||||
| :--------------------------------------------------------: | :-------: | :-------: | :-----------------------------------------------------------: | :-------------------------------------------------------------: |
|
||||
| [CSPResNeXt50](../papers/cspnet.md) | 77.10 | 93.55 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/cspnet/cspresnext50_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/cspresnext50_8xb32_in1k.log.json) |
|
||||
| [DenseNet121](../papers/densenet.md) | 72.62 | 91.04 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/densenet/densenet121_4xb256_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/densenet121_4xb256_in1k.log.json) |
|
||||
| [EfficientNet-B4(AA + AdvProp)](../papers/efficientnet.md) | 75.55 | 92.86 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b4_8xb32-01norm_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/efficientnet-b4_8xb32-01norm_in1k.log.json) |
|
||||
| [HRNet-W18](../papers/hrnet.md) | 77.01 | 93.46 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w18_4xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/hrnet-w18_4xb32_in1k.log.json) |
|
||||
| [ResNetV1D-152](../papers/resnet.md) | 77.11 | 94.54 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnetv1d152_8xb32_in1k.py) | [model](<>) \| [log](<>) |
|
||||
| [ResNet-50](../papers/resnet.md) | 76.40 | - | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet50_8xb32_in1k.py) | [model](<>) \| [log](<>) |
|
||||
| [ResNetXt-32x4d-50](../papers/resnext.md) | 77.55 | 93.75 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext50-32x4d_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/resnext50-32x4d_8xb32_in1k.log.json) |
|
||||
| [SE-ResNet-50](../papers/seresnet.md) | 77.64 | 93.76 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/seresnet/seresnet50_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/seresnet50_8xb32_in1k.log.json) |
|
||||
| [VGG-11](../papers/vgg.md) | 68.92 | 88.83 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg11_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/vgg11_8xb32_in1k.log.json) |
|
||||
| [ShuffleNetV2 1.0x](../papers/shufflenet_v2.md) | 69.53 | 88.82 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/shufflenet_v2/shufflenet-v2-1x_16xb64_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/shufflenet-v2-1x_16xb64_in1k.json) |
|
||||
|
||||
**All above models are provided by Huawei Ascend group.**
|
|
@ -17,8 +17,8 @@ and make sure you fill in all required information in the template.
|
|||
|
||||
| MMClassification version | MMCV version |
|
||||
| :----------------------: | :--------------------: |
|
||||
| dev | mmcv>=1.6.0, \<1.7.0 |
|
||||
| 0.24.0 (master) | mmcv>=1.4.2, \<1.7.0 |
|
||||
| dev | mmcv>=1.7.0, \<1.9.0 |
|
||||
| 0.24.1 (master) | mmcv>=1.4.2, \<1.9.0 |
|
||||
| 0.23.2 | mmcv>=1.4.2, \<1.7.0 |
|
||||
| 0.22.1 | mmcv>=1.4.2, \<1.6.0 |
|
||||
| 0.21.0 | mmcv>=1.4.2, \<=1.5.0 |
|
||||
|
|
|
@ -78,6 +78,13 @@ You can switch between Chinese and English documentation in the lower-left corne
|
|||
compatibility.md
|
||||
faq.md
|
||||
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
:caption: Device Support
|
||||
|
||||
device/npu.md
|
||||
|
||||
.. toctree::
|
||||
:caption: Language Switch
|
||||
|
||||
|
|
|
@ -9,12 +9,19 @@ pre {
|
|||
white-space: pre;
|
||||
}
|
||||
|
||||
article.pytorch-article .section :not(dt) > code {
|
||||
article.pytorch-article section code {
|
||||
padding: .2em .4em;
|
||||
background-color: #f3f4f7;
|
||||
border-radius: 5px;
|
||||
}
|
||||
|
||||
table.colwidths-auto td {
|
||||
/* Disable the change in tables */
|
||||
article.pytorch-article section table code {
|
||||
padding: unset;
|
||||
background-color: unset;
|
||||
border-radius: unset;
|
||||
}
|
||||
|
||||
table.autosummary td {
|
||||
width: 50%
|
||||
}
|
||||
|
|
|
@ -48,7 +48,6 @@ extensions = [
|
|||
'sphinx.ext.intersphinx',
|
||||
'sphinx.ext.napoleon',
|
||||
'sphinx.ext.viewcode',
|
||||
'sphinx_markdown_tables',
|
||||
'myst_parser',
|
||||
'sphinx_copybutton',
|
||||
]
|
||||
|
@ -214,7 +213,7 @@ intersphinx_mapping = {
|
|||
'python': ('https://docs.python.org/3', None),
|
||||
'numpy': ('https://numpy.org/doc/stable', None),
|
||||
'torch': ('https://pytorch.org/docs/stable/', None),
|
||||
'mmcv': ('https://mmcv.readthedocs.io/en/master/', None),
|
||||
'mmcv': ('https://mmcv.readthedocs.io/zh_CN/latest/', None),
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -0,0 +1,34 @@
|
|||
# NPU (华为昇腾)
|
||||
|
||||
## 使用方法
|
||||
|
||||
首先,请参考 {external+mmcv:doc}`教程 <get_started/build>` 安装带有 NPU 支持的 MMCV。
|
||||
|
||||
使用如下命令,可以利用 8 个 NPU 在机器上训练模型(以 ResNet 为例):
|
||||
|
||||
```shell
|
||||
bash tools/dist_train.sh configs/cspnet/resnet50_8xb32_in1k.py 8 --device npu
|
||||
```
|
||||
|
||||
或者,使用如下命令,在一个 NPU 上训练模型(以 ResNet 为例):
|
||||
|
||||
```shell
|
||||
python tools/train.py configs/cspnet/resnet50_8xb32_in1k.py --device npu
|
||||
```
|
||||
|
||||
## 经过验证的模型
|
||||
|
||||
| 模型 | Top-1 (%) | Top-5 (%) | 配置文件 | 相关下载 |
|
||||
| :--------------------------------------------------------: | :-------: | :-------: | :------------------------------------------------------------: | :------------------------------------------------------------: |
|
||||
| [CSPResNeXt50](../papers/cspnet.md) | 77.10 | 93.55 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/cspnet/cspresnext50_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/cspresnext50_8xb32_in1k.log.json) |
|
||||
| [DenseNet121](../papers/densenet.md) | 72.62 | 91.04 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/densenet/densenet121_4xb256_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/densenet121_4xb256_in1k.log.json) |
|
||||
| [EfficientNet-B4(AA + AdvProp)](../papers/efficientnet.md) | 75.55 | 92.86 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b4_8xb32-01norm_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/efficientnet-b4_8xb32-01norm_in1k.log.json) |
|
||||
| [HRNet-W18](../papers/hrnet.md) | 77.01 | 93.46 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w18_4xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/hrnet-w18_4xb32_in1k.log.json) |
|
||||
| [ResNetV1D-152](../papers/resnet.md) | 77.11 | 94.54 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnetv1d152_8xb32_in1k.py) | [model](<>) \| [log](<>) |
|
||||
| [ResNet-50](../papers/resnet.md) | 76.40 | - | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet50_8xb32_in1k.py) | [model](<>) \| [log](<>) |
|
||||
| [ResNetXt-32x4d-50](../papers/resnext.md) | 77.55 | 93.75 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext50-32x4d_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/resnext50-32x4d_8xb32_in1k.log.json) |
|
||||
| [SE-ResNet-50](../papers/seresnet.md) | 77.64 | 93.76 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/seresnet/seresnet50_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/seresnet50_8xb32_in1k.log.json) |
|
||||
| [VGG-11](../papers/vgg.md) | 68.92 | 88.83 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg11_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/vgg11_8xb32_in1k.log.json) |
|
||||
| [ShuffleNetV2 1.0x](../papers/shufflenet_v2.md) | 69.53 | 88.82 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/shufflenet_v2/shufflenet-v2-1x_16xb64_in1k.py) | [model](<>) \| [log](<>) |
|
||||
|
||||
**以上所有模型权重及训练日志均由华为昇腾团队提供**
|
|
@ -15,8 +15,8 @@
|
|||
|
||||
| MMClassification version | MMCV version |
|
||||
| :----------------------: | :--------------------: |
|
||||
| dev | mmcv>=1.6.0, \<1.7.0 |
|
||||
| 0.24.0 (master) | mmcv>=1.4.2, \<1.7.0 |
|
||||
| dev | mmcv>=1.7.0, \<1.9.0 |
|
||||
| 0.24.1 (master) | mmcv>=1.4.2, \<1.9.0 |
|
||||
| 0.23.2 | mmcv>=1.4.2, \<1.7.0 |
|
||||
| 0.22.1 | mmcv>=1.4.2, \<1.6.0 |
|
||||
| 0.21.0 | mmcv>=1.4.2, \<=1.5.0 |
|
||||
|
|
|
@ -78,6 +78,13 @@ You can switch between Chinese and English documentation in the lower-left corne
|
|||
faq.md
|
||||
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
:caption: 设备支持
|
||||
|
||||
device/npu.md
|
||||
|
||||
|
||||
.. toctree::
|
||||
:caption: 语言切换
|
||||
|
||||
|
|
|
@ -48,7 +48,7 @@ def digit_version(version_str: str, length: int = 4):
|
|||
|
||||
|
||||
mmcv_minimum_version = '1.4.2'
|
||||
mmcv_maximum_version = '1.7.0'
|
||||
mmcv_maximum_version = '1.9.0'
|
||||
mmcv_version = digit_version(mmcv.__version__)
|
||||
|
||||
|
||||
|
|
|
@ -131,7 +131,6 @@ def train_model(model,
|
|||
model = wrap_distributed_model(
|
||||
model,
|
||||
cfg.device,
|
||||
device_ids=[torch.cuda.current_device()],
|
||||
broadcast_buffers=False,
|
||||
find_unused_parameters=find_unused_parameters)
|
||||
else:
|
||||
|
@ -173,6 +172,10 @@ def train_model(model,
|
|||
|
||||
# fp16 setting
|
||||
fp16_cfg = cfg.get('fp16', None)
|
||||
|
||||
if fp16_cfg is None and device == 'npu':
|
||||
fp16_cfg = {'loss_scale': 'dynamic'}
|
||||
|
||||
if fp16_cfg is not None:
|
||||
if device == 'ipu':
|
||||
from mmcv.device.ipu import IPUFp16OptimizerHook
|
||||
|
|
|
@ -4,6 +4,7 @@ from torch.utils.data import DistributedSampler as _DistributedSampler
|
|||
|
||||
from mmcls.core.utils import sync_random_seed
|
||||
from mmcls.datasets import SAMPLERS
|
||||
from mmcls.utils import auto_select_device
|
||||
|
||||
|
||||
@SAMPLERS.register_module()
|
||||
|
@ -30,7 +31,7 @@ class DistributedSampler(_DistributedSampler):
|
|||
# in the same order based on the same seed. Then different ranks
|
||||
# could use different indices to select non-overlapped data from the
|
||||
# same data list.
|
||||
self.seed = sync_random_seed(seed)
|
||||
self.seed = sync_random_seed(seed, device=auto_select_device())
|
||||
|
||||
def __iter__(self):
|
||||
# deterministically shuffle based on epoch
|
||||
|
|
|
@ -36,8 +36,8 @@ class LayerNorm2d(nn.LayerNorm):
|
|||
assert x.dim() == 4, 'LayerNorm2d only supports inputs with shape ' \
|
||||
f'(N, C, H, W), but got tensor with shape {x.shape}'
|
||||
return F.layer_norm(
|
||||
x.permute(0, 2, 3, 1), self.normalized_shape, self.weight,
|
||||
self.bias, self.eps).permute(0, 3, 1, 2)
|
||||
x.permute(0, 2, 3, 1).contiguous(), self.normalized_shape,
|
||||
self.weight, self.bias, self.eps).permute(0, 3, 1, 2).contiguous()
|
||||
|
||||
|
||||
class ConvNeXtBlock(BaseModule):
|
||||
|
|
|
@ -16,7 +16,10 @@ def wrap_non_distributed_model(model, device='cuda', dim=0, *args, **kwargs):
|
|||
Returns:
|
||||
model(nn.Module): the model to be parallelized.
|
||||
"""
|
||||
if device == 'cuda':
|
||||
if device == 'npu':
|
||||
from mmcv.device.npu import NPUDataParallel
|
||||
model = NPUDataParallel(model.npu(), dim=dim, *args, **kwargs)
|
||||
elif device == 'cuda':
|
||||
from mmcv.parallel import MMDataParallel
|
||||
model = MMDataParallel(model.cuda(), dim=dim, *args, **kwargs)
|
||||
elif device == 'cpu':
|
||||
|
@ -49,9 +52,16 @@ def wrap_distributed_model(model, device='cuda', *args, **kwargs):
|
|||
.. [1] https://pytorch.org/docs/stable/generated/torch.nn.parallel.
|
||||
DistributedDataParallel.html
|
||||
"""
|
||||
if device == 'cuda':
|
||||
if device == 'npu':
|
||||
from mmcv.device.npu import NPUDistributedDataParallel
|
||||
from torch.npu import current_device
|
||||
model = NPUDistributedDataParallel(
|
||||
model.npu(), *args, device_ids=[current_device()], **kwargs)
|
||||
elif device == 'cuda':
|
||||
from mmcv.parallel import MMDistributedDataParallel
|
||||
model = MMDistributedDataParallel(model.cuda(), *args, **kwargs)
|
||||
from torch.cuda import current_device
|
||||
model = MMDistributedDataParallel(
|
||||
model.cuda(), *args, device_ids=[current_device()], **kwargs)
|
||||
else:
|
||||
raise RuntimeError(f'Unavailable device "{device}"')
|
||||
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved
|
||||
|
||||
__version__ = '0.24.0'
|
||||
__version__ = '0.24.1'
|
||||
|
||||
|
||||
def parse_version_info(version_str):
|
||||
|
|
|
@ -1 +1 @@
|
|||
mmcv-full>=1.4.2,<1.7.0
|
||||
mmcv-full>=1.4.2,<1.9.0
|
||||
|
|
Loading…
Reference in New Issue