[Refactor] add auto_scale_lr
parent
f37dc44a25
commit
ce81a07059
|
@ -6,3 +6,8 @@ _base_ = [
|
|||
]
|
||||
|
||||
train_dataloader = dict(batch_size=128)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (128 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=1024)
|
||||
|
|
|
@ -6,3 +6,8 @@ _base_ = [
|
|||
]
|
||||
|
||||
train_dataloader = dict(batch_size=128)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (128 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=1024)
|
||||
|
|
|
@ -6,3 +6,8 @@ _base_ = [
|
|||
]
|
||||
|
||||
train_dataloader = dict(batch_size=128)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (128 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=1024)
|
||||
|
|
|
@ -6,3 +6,8 @@ _base_ = [
|
|||
]
|
||||
|
||||
train_dataloader = dict(batch_size=128)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (128 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=1024)
|
||||
|
|
|
@ -32,3 +32,8 @@ param_scheduler = [
|
|||
]
|
||||
|
||||
train_cfg = dict(by_epoch=True, max_epochs=150)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (10 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=640)
|
||||
|
|
|
@ -32,3 +32,8 @@ param_scheduler = [
|
|||
]
|
||||
|
||||
train_cfg = dict(by_epoch=True, max_epochs=150)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (10 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=640)
|
||||
|
|
|
@ -12,3 +12,8 @@ optim_wrapper = dict(
|
|||
)
|
||||
|
||||
train_cfg = dict(by_epoch=True, max_epochs=300)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (10 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=640)
|
||||
|
|
|
@ -16,3 +16,8 @@ optim_wrapper = dict(
|
|||
|
||||
# runtime setting
|
||||
custom_hooks = [dict(type='EMAHook', momentum=4e-5, priority='ABOVE_NORMAL')]
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (32 GPUs) x (128 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=4096)
|
||||
|
|
|
@ -16,3 +16,8 @@ optim_wrapper = dict(
|
|||
|
||||
# runtime setting
|
||||
custom_hooks = [dict(type='EMAHook', momentum=4e-5, priority='ABOVE_NORMAL')]
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (64 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=4096)
|
||||
|
|
|
@ -16,3 +16,8 @@ optim_wrapper = dict(
|
|||
|
||||
# runtime setting
|
||||
custom_hooks = [dict(type='EMAHook', momentum=4e-5, priority='ABOVE_NORMAL')]
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (32 GPUs) x (128 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=4096)
|
||||
|
|
|
@ -16,3 +16,8 @@ optim_wrapper = dict(
|
|||
|
||||
# runtime setting
|
||||
custom_hooks = [dict(type='EMAHook', momentum=4e-5, priority='ABOVE_NORMAL')]
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (32 GPUs) x (128 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=4096)
|
||||
|
|
|
@ -16,3 +16,8 @@ optim_wrapper = dict(
|
|||
|
||||
# runtime setting
|
||||
custom_hooks = [dict(type='EMAHook', momentum=4e-5, priority='ABOVE_NORMAL')]
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (64 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=4096)
|
||||
|
|
|
@ -43,3 +43,8 @@ test_pipeline = [
|
|||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -43,3 +43,8 @@ test_pipeline = [
|
|||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -43,3 +43,8 @@ test_pipeline = [
|
|||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -7,3 +7,8 @@ model = dict(
|
|||
# Change to the path of the pretrained model
|
||||
# init_cfg=dict(type='Pretrained', checkpoint=''),
|
||||
)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (16 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=512)
|
||||
|
|
|
@ -8,3 +8,8 @@ model = dict(
|
|||
|
||||
# dataset settings
|
||||
train_dataloader = dict(batch_size=64)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (16 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=1024)
|
||||
|
|
|
@ -30,3 +30,8 @@ train_dataloader = dict(batch_size=32)
|
|||
|
||||
# schedule settings
|
||||
optim_wrapper = dict(clip_grad=dict(max_norm=1.0))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (16 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=512)
|
||||
|
|
|
@ -12,3 +12,8 @@ train_dataloader = dict(batch_size=64)
|
|||
|
||||
# runtime settings
|
||||
custom_hooks = [dict(type='EMAHook', momentum=4e-5, priority='ABOVE_NORMAL')]
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (16 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=1024)
|
||||
|
|
|
@ -5,3 +5,8 @@ model = dict(
|
|||
backbone=dict(type='DistilledVisionTransformer', arch='deit-small'),
|
||||
head=dict(type='DeiTClsHead', in_channels=384),
|
||||
)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (4 GPUs) x (256 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=1024)
|
||||
|
|
|
@ -46,3 +46,8 @@ optim_wrapper = dict(
|
|||
}),
|
||||
clip_grad=dict(max_norm=5.0),
|
||||
)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (4 GPUs) x (256 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=1024)
|
||||
|
|
|
@ -5,3 +5,8 @@ model = dict(
|
|||
backbone=dict(type='DistilledVisionTransformer', arch='deit-tiny'),
|
||||
head=dict(type='DeiTClsHead', in_channels=192),
|
||||
)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (4 GPUs) x (256 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=1024)
|
||||
|
|
|
@ -5,3 +5,8 @@ model = dict(
|
|||
backbone=dict(type='VisionTransformer', arch='deit-tiny'),
|
||||
head=dict(type='VisionTransformerClsHead', in_channels=192),
|
||||
)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (4 GPUs) x (256 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=1024)
|
||||
|
|
|
@ -10,3 +10,8 @@ train_dataloader = dict(batch_size=256)
|
|||
|
||||
# schedule settings
|
||||
train_cfg = dict(by_epoch=True, max_epochs=90)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (4 GPUs) x (256 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=1024)
|
||||
|
|
|
@ -10,3 +10,8 @@ train_dataloader = dict(batch_size=256)
|
|||
|
||||
# schedule settings
|
||||
train_cfg = dict(by_epoch=True, max_epochs=90)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (4 GPUs) x (256 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=1024)
|
||||
|
|
|
@ -10,3 +10,8 @@ train_dataloader = dict(batch_size=256)
|
|||
|
||||
# schedule settings
|
||||
train_cfg = dict(by_epoch=True, max_epochs=90)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (4 GPUs) x (256 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=1024)
|
||||
|
|
|
@ -10,3 +10,8 @@ train_dataloader = dict(batch_size=256)
|
|||
|
||||
# schedule settings
|
||||
train_cfg = dict(by_epoch=True, max_epochs=90)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (4 GPUs) x (256 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=1024)
|
||||
|
|
|
@ -29,3 +29,8 @@ test_pipeline = [
|
|||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -22,3 +22,8 @@ test_pipeline = [
|
|||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -29,3 +29,8 @@ test_pipeline = [
|
|||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -22,3 +22,8 @@ test_pipeline = [
|
|||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -29,3 +29,8 @@ test_pipeline = [
|
|||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -22,3 +22,8 @@ test_pipeline = [
|
|||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -29,3 +29,8 @@ test_pipeline = [
|
|||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -22,3 +22,8 @@ test_pipeline = [
|
|||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -29,3 +29,8 @@ test_pipeline = [
|
|||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -22,3 +22,8 @@ test_pipeline = [
|
|||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -29,3 +29,8 @@ test_pipeline = [
|
|||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -22,3 +22,8 @@ test_pipeline = [
|
|||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -29,3 +29,8 @@ test_pipeline = [
|
|||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -22,3 +22,8 @@ test_pipeline = [
|
|||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -29,3 +29,8 @@ test_pipeline = [
|
|||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -22,3 +22,8 @@ test_pipeline = [
|
|||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -29,3 +29,8 @@ test_pipeline = [
|
|||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -22,3 +22,8 @@ test_pipeline = [
|
|||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -29,3 +29,8 @@ test_pipeline = [
|
|||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -22,3 +22,8 @@ test_pipeline = [
|
|||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -4,3 +4,8 @@ _base_ = [
|
|||
'../_base_/schedules/imagenet_bs256_coslr.py',
|
||||
'../_base_/default_runtime.py'
|
||||
]
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (4 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=128)
|
||||
|
|
|
@ -4,3 +4,8 @@ _base_ = [
|
|||
'../_base_/schedules/imagenet_bs256_coslr.py',
|
||||
'../_base_/default_runtime.py'
|
||||
]
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (4 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=128)
|
||||
|
|
|
@ -4,3 +4,8 @@ _base_ = [
|
|||
'../_base_/schedules/imagenet_bs256_coslr.py',
|
||||
'../_base_/default_runtime.py'
|
||||
]
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (4 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=128)
|
||||
|
|
|
@ -4,3 +4,8 @@ _base_ = [
|
|||
'../_base_/schedules/imagenet_bs256_coslr.py',
|
||||
'../_base_/default_runtime.py'
|
||||
]
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (4 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=128)
|
||||
|
|
|
@ -4,3 +4,8 @@ _base_ = [
|
|||
'../_base_/schedules/imagenet_bs256_coslr.py',
|
||||
'../_base_/default_runtime.py'
|
||||
]
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (4 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=128)
|
||||
|
|
|
@ -4,3 +4,8 @@ _base_ = [
|
|||
'../_base_/schedules/imagenet_bs256_coslr.py',
|
||||
'../_base_/default_runtime.py'
|
||||
]
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (4 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=128)
|
||||
|
|
|
@ -4,3 +4,8 @@ _base_ = [
|
|||
'../_base_/schedules/imagenet_bs256_coslr.py',
|
||||
'../_base_/default_runtime.py'
|
||||
]
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (4 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=128)
|
||||
|
|
|
@ -22,3 +22,8 @@ test_pipeline = [
|
|||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -84,3 +84,8 @@ load_from = None
|
|||
|
||||
# whether to resume the training of the checkpoint
|
||||
resume_from = None
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (128 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=1024)
|
||||
|
|
|
@ -6,3 +6,8 @@ _base_ = [
|
|||
]
|
||||
|
||||
optim_wrapper = dict(clip_grad=dict(max_norm=1.0))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (64 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=4096)
|
||||
|
|
|
@ -6,3 +6,8 @@ _base_ = [
|
|||
]
|
||||
|
||||
optim_wrapper = dict(clip_grad=dict(max_norm=1.0))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (64 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=4096)
|
||||
|
|
|
@ -4,3 +4,8 @@ _base_ = [
|
|||
'../_base_/schedules/imagenet_bs256_epochstep.py',
|
||||
'../_base_/default_runtime.py'
|
||||
]
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -21,3 +21,8 @@ param_scheduler = dict(type='StepLR', by_epoch=True, step_size=2, gamma=0.973)
|
|||
train_cfg = dict(by_epoch=True, max_epochs=600, val_interval=1)
|
||||
val_cfg = dict()
|
||||
test_cfg = dict()
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -13,3 +13,8 @@ param_scheduler = dict(
|
|||
)
|
||||
|
||||
train_cfg = dict(by_epoch=True, max_epochs=200)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (16 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=128)
|
||||
|
|
|
@ -21,3 +21,8 @@ param_scheduler = dict(type='StepLR', by_epoch=True, step_size=2, gamma=0.973)
|
|||
train_cfg = dict(by_epoch=True, max_epochs=600, val_interval=1)
|
||||
val_cfg = dict()
|
||||
test_cfg = dict()
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -10,3 +10,8 @@ optim_wrapper = dict(
|
|||
optimizer=dict(lr=4e-3),
|
||||
clip_grad=dict(max_norm=5.0),
|
||||
)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (32 GPUs) x (128 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=4096)
|
||||
|
|
|
@ -10,3 +10,8 @@ optim_wrapper = dict(
|
|||
optimizer=dict(lr=4e-3),
|
||||
clip_grad=dict(max_norm=5.0),
|
||||
)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (32 GPUs) x (128 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=4096)
|
||||
|
|
|
@ -10,3 +10,8 @@ optim_wrapper = dict(
|
|||
optimizer=dict(lr=4e-3),
|
||||
clip_grad=dict(max_norm=5.0),
|
||||
)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (32 GPUs) x (128 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=4096)
|
||||
|
|
|
@ -10,3 +10,8 @@ optim_wrapper = dict(
|
|||
optimizer=dict(lr=4e-3),
|
||||
clip_grad=dict(max_norm=5.0),
|
||||
)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (32 GPUs) x (128 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=4096)
|
||||
|
|
|
@ -10,3 +10,8 @@ optim_wrapper = dict(
|
|||
optimizer=dict(lr=4e-3),
|
||||
clip_grad=dict(max_norm=5.0),
|
||||
)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (32 GPUs) x (128 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=4096)
|
||||
|
|
|
@ -4,3 +4,8 @@ _base_ = ['./regnetx-400mf_8xb128_in1k.py']
|
|||
model = dict(
|
||||
backbone=dict(type='RegNet', arch='regnetx_1.6gf'),
|
||||
head=dict(in_channels=912, ))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (128 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=1024)
|
||||
|
|
|
@ -11,3 +11,8 @@ train_dataloader = dict(batch_size=64)
|
|||
# schedule settings
|
||||
# for batch_size 512, use lr = 0.4
|
||||
optim_wrapper = dict(optimizer=dict(lr=0.4))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=512)
|
||||
|
|
|
@ -11,3 +11,8 @@ train_dataloader = dict(batch_size=64)
|
|||
# schedule settings
|
||||
# for batch_size 512, use lr = 0.4
|
||||
optim_wrapper = dict(optimizer=dict(lr=0.4))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=512)
|
||||
|
|
|
@ -11,3 +11,8 @@ train_dataloader = dict(batch_size=64)
|
|||
# schedule settings
|
||||
# for batch_size 512, use lr = 0.4
|
||||
optim_wrapper = dict(optimizer=dict(lr=0.4))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=512)
|
||||
|
|
|
@ -53,3 +53,8 @@ custom_hooks = [
|
|||
interval=1,
|
||||
priority='ABOVE_NORMAL')
|
||||
]
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (128 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=1024)
|
||||
|
|
|
@ -11,3 +11,8 @@ train_dataloader = dict(batch_size=64)
|
|||
# schedule settings
|
||||
# for batch_size 512, use lr = 0.4
|
||||
optim_wrapper = dict(optimizer=dict(lr=0.4))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=512)
|
||||
|
|
|
@ -11,3 +11,8 @@ train_dataloader = dict(batch_size=64)
|
|||
# schedule settings
|
||||
# for batch_size 512, use lr = 0.4
|
||||
optim_wrapper = dict(optimizer=dict(lr=0.4))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=512)
|
||||
|
|
|
@ -4,3 +4,8 @@ _base_ = ['./regnetx-400mf_8xb128_in1k.py']
|
|||
model = dict(
|
||||
backbone=dict(type='RegNet', arch='regnetx_800mf'),
|
||||
head=dict(in_channels=672, ))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (128 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=1024)
|
||||
|
|
|
@ -29,3 +29,8 @@ test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
|||
|
||||
# schedule settings
|
||||
optim_wrapper = dict(clip_grad=dict(max_norm=1.0))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=512)
|
||||
|
|
|
@ -19,3 +19,8 @@ test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
|||
|
||||
# schedule settings
|
||||
optim_wrapper = dict(clip_grad=dict(max_norm=5.0))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=512)
|
||||
|
|
|
@ -1,3 +1,8 @@
|
|||
_base_ = ['./repmlp-base_8xb64_in1k.py']
|
||||
|
||||
model = dict(backbone=dict(deploy=True))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=512)
|
||||
|
|
|
@ -1,3 +1,8 @@
|
|||
_base_ = ['./repmlp-base_8xb64_in1k-256px.py']
|
||||
|
||||
model = dict(backbone=dict(deploy=True))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=512)
|
||||
|
|
|
@ -10,3 +10,8 @@ param_scheduler = dict(
|
|||
type='CosineAnnealingLR', T_max=120, by_epoch=True, begin=0, end=120)
|
||||
|
||||
train_cfg = dict(by_epoch=True, max_epochs=120)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (4 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -1,3 +1,8 @@
|
|||
_base_ = './repvgg-A0_4xb64-coslr-120e_in1k.py'
|
||||
|
||||
model = dict(backbone=dict(arch='A1'))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (4 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -1,3 +1,8 @@
|
|||
_base_ = './repvgg-A0_4xb64-coslr-120e_in1k.py'
|
||||
|
||||
model = dict(backbone=dict(arch='A2'), head=dict(in_channels=1408))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (4 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -1,3 +1,8 @@
|
|||
_base_ = './repvgg-A0_4xb64-coslr-120e_in1k.py'
|
||||
|
||||
model = dict(backbone=dict(arch='B0'), head=dict(in_channels=1280))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (4 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -1,3 +1,8 @@
|
|||
_base_ = './repvgg-A0_4xb64-coslr-120e_in1k.py'
|
||||
|
||||
model = dict(backbone=dict(arch='B1'), head=dict(in_channels=2048))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (4 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -1,3 +1,8 @@
|
|||
_base_ = './repvgg-A0_4xb64-coslr-120e_in1k.py'
|
||||
|
||||
model = dict(backbone=dict(arch='B1g2'), head=dict(in_channels=2048))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (4 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -1,3 +1,8 @@
|
|||
_base_ = './repvgg-A0_4xb64-coslr-120e_in1k.py'
|
||||
|
||||
model = dict(backbone=dict(arch='B1g4'), head=dict(in_channels=2048))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (4 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -1,3 +1,8 @@
|
|||
_base_ = './repvgg-A0_4xb64-coslr-120e_in1k.py'
|
||||
|
||||
model = dict(backbone=dict(arch='B2'), head=dict(in_channels=2560))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (4 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -1,3 +1,8 @@
|
|||
_base_ = './repvgg-B3_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py'
|
||||
|
||||
model = dict(backbone=dict(arch='B2g4'))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (4 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -37,3 +37,8 @@ test_pipeline = [
|
|||
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
|
||||
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (4 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -1,3 +1,8 @@
|
|||
_base_ = './repvgg-B3_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py'
|
||||
|
||||
model = dict(backbone=dict(arch='B3g4'))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (4 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -1,3 +1,8 @@
|
|||
_base_ = './repvgg-B3_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py'
|
||||
|
||||
model = dict(backbone=dict(arch='D2se'))
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (4 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -3,3 +3,8 @@ _base_ = [
|
|||
'../_base_/datasets/imagenet_bs32_pil_resize.py',
|
||||
'../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
|
||||
]
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -3,3 +3,8 @@ _base_ = [
|
|||
'../_base_/datasets/imagenet_bs32_pil_resize.py',
|
||||
'../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
|
||||
]
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -3,3 +3,8 @@ _base_ = [
|
|||
'../_base_/datasets/imagenet_bs32_pil_resize.py',
|
||||
'../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
|
||||
]
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
|
@ -71,3 +71,8 @@ param_scheduler = [
|
|||
]
|
||||
|
||||
train_cfg = dict(by_epoch=True, max_epochs=270)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (32 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=2048)
|
||||
|
|
|
@ -67,3 +67,8 @@ param_scheduler = [
|
|||
]
|
||||
|
||||
train_cfg = dict(by_epoch=True, max_epochs=270)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (64 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=2048)
|
||||
|
|
|
@ -71,3 +71,8 @@ param_scheduler = [
|
|||
]
|
||||
|
||||
train_cfg = dict(by_epoch=True, max_epochs=270)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (64 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=2048)
|
||||
|
|
|
@ -71,3 +71,8 @@ param_scheduler = [
|
|||
]
|
||||
|
||||
train_cfg = dict(by_epoch=True, max_epochs=270)
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (32 GPUs) x (64 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=2048)
|
||||
|
|
|
@ -3,3 +3,8 @@ _base_ = [
|
|||
'../_base_/datasets/cifar10_bs16.py',
|
||||
'../_base_/schedules/cifar10_bs128.py', '../_base_/default_runtime.py'
|
||||
]
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (16 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=128)
|
||||
|
|
|
@ -2,3 +2,8 @@ _base_ = [
|
|||
'../_base_/models/resnet101.py', '../_base_/datasets/imagenet_bs32.py',
|
||||
'../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py'
|
||||
]
|
||||
|
||||
# NOTE: `auto_scale_lr` is for automatically scaling LR,
|
||||
# USER SHOULD NOT CHANGE ITS VALUES.
|
||||
# base_batch_size = (8 GPUs) x (32 samples per GPU)
|
||||
auto_scale_lr = dict(base_batch_size=256)
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue