diff --git a/mmcls/models/classifiers/base.py b/mmcls/models/classifiers/base.py index a252cbe5c..e955c3f36 100644 --- a/mmcls/models/classifiers/base.py +++ b/mmcls/models/classifiers/base.py @@ -45,12 +45,12 @@ class BaseClassifier(BaseModel, metaclass=ABCMeta): def forward(self, batch_inputs: torch.Tensor, data_samples: Optional[List[BaseDataElement]] = None, - mode: str = 'feat'): + mode: str = 'tensor'): """The unified entry for a forward process in both training and test. - The method should accept three modes: "feat", "predict" and "loss": + The method should accept three modes: "tensor", "predict" and "loss": - - "feat": Forward the whole network and return tensor or tuple of + - "tensor": Forward the whole network and return tensor or tuple of tensor without any post-processing, same as a common nn.Module. - "predict": Forward and return the predictions, which are fully processed to a list of :obj:`BaseDataElement`. @@ -66,12 +66,12 @@ class BaseClassifier(BaseModel, metaclass=ABCMeta): data_samples (List[BaseDataElement], optional): The annotation data of every samples. It's required if ``mode="loss"``. Defaults to None. - mode (str): Return what kind of value. Defaults to 'feat'. + mode (str): Return what kind of value. Defaults to 'tensor'. Returns: The return type depends on ``mode``. - - If ``mode="feat"``, return a tensor or a tuple of tensor. + - If ``mode="tensor"``, return a tensor or a tuple of tensor. - If ``mode="predict"``, return a list of :obj:`mmengine.BaseDataElement`. - If ``mode="loss"``, return a dict of tensor. diff --git a/mmcls/models/classifiers/image.py b/mmcls/models/classifiers/image.py index af66c7a12..9e94111e3 100644 --- a/mmcls/models/classifiers/image.py +++ b/mmcls/models/classifiers/image.py @@ -72,12 +72,12 @@ class ImageClassifier(BaseClassifier): def forward(self, batch_inputs: torch.Tensor, data_samples: Optional[List[ClsDataSample]] = None, - mode: str = 'feat'): + mode: str = 'tensor'): """The unified entry for a forward process in both training and test. - The method should accept three modes: "feat", "predict" and "loss": + The method should accept three modes: "tensor", "predict" and "loss": - - "feat": Forward the whole network and return tensor or tuple of + - "tensor": Forward the whole network and return tensor or tuple of tensor without any post-processing, same as a common nn.Module. - "predict": Forward and return the predictions, which are fully processed to a list of :obj:`ClsDataSample`. @@ -93,17 +93,17 @@ class ImageClassifier(BaseClassifier): data_samples (List[ClsDataSample], optional): The annotation data of every samples. It's required if ``mode="loss"``. Defaults to None. - mode (str): Return what kind of value. Defaults to 'feat'. + mode (str): Return what kind of value. Defaults to 'tensor'. Returns: The return type depends on ``mode``. - - If ``mode="feat"``, return a tuple of tensor. + - If ``mode="tensor"``, return a tensor or a tuple of tensor. - If ``mode="predict"``, return a list of :obj:`mmcls.core.ClsDataSample`. - If ``mode="loss"``, return a dict of tensor. """ - if mode == 'feat': + if mode == 'tensor': feats = self.extract_feat(batch_inputs) return self.head(feats) if self.with_head else feats elif mode == 'loss':