[Docs] Add NPU support page. (#1149)

* init readme

* [Docs] Finish the HUAWEI Ascend device support docs.

Co-authored-by: mzr1996 <mzr1996@163.com>
pull/1198/head
wangjiangben-hw 2022-11-01 14:10:18 +08:00 committed by GitHub
parent 17ed870fd1
commit dd664ffcd4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 101 additions and 7 deletions

View File

@ -9,12 +9,19 @@ pre {
white-space: pre;
}
article.pytorch-article .section :not(dt) > code {
article.pytorch-article section code {
padding: .2em .4em;
background-color: #f3f4f7;
border-radius: 5px;
}
table.colwidths-auto td {
/* Disable the change in tables */
article.pytorch-article section table code {
padding: unset;
background-color: unset;
border-radius: unset;
}
table.autosummary td {
width: 50%
}

View File

@ -48,7 +48,6 @@ extensions = [
'sphinx.ext.intersphinx',
'sphinx.ext.napoleon',
'sphinx.ext.viewcode',
'sphinx_markdown_tables',
'myst_parser',
'sphinx_copybutton',
]

View File

@ -0,0 +1,34 @@
# NPU (HUAWEI Ascend)
## Usage
Please install MMCV with NPU device support according to {external+mmcv:doc}`the tutorial <get_started/build>`.
Here we use 8 NPUs on your computer to train the model with the following command:
```shell
bash tools/dist_train.sh configs/cspnet/resnet50_8xb32_in1k.py 8 --device npu
```
Also, you can use only one NPU to trian the model with the following command:
```shell
python tools/train.py configs/cspnet/resnet50_8xb32_in1k.py --device npu
```
## Verified Models
| Model | Top-1 (%) | Top-5 (%) | Config | Download |
| :--------------------------------------------------------: | :-------: | :-------: | :-----------------------------------------------------------: | :-------------------------------------------------------------: |
| [CSPResNeXt50](../papers/cspnet.md) | 77.10 | 93.55 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/cspnet/cspresnext50_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/cspresnext50_8xb32_in1k.log.json) |
| [DenseNet121](../papers/densenet.md) | 72.62 | 91.04 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/densenet/densenet121_4xb256_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/densenet121_4xb256_in1k.log.json) |
| [EfficientNet-B4(AA + AdvProp)](../papers/efficientnet.md) | 75.55 | 92.86 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b4_8xb32-01norm_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/efficientnet-b4_8xb32-01norm_in1k.log.json) |
| [HRNet-W18](../papers/hrnet.md) | 77.01 | 93.46 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w18_4xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/hrnet-w18_4xb32_in1k.log.json) |
| [ResNetV1D-152](../papers/resnet.md) | 77.11 | 94.54 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnetv1d152_8xb32_in1k.py) | [model](<>) \| [log](<>) |
| [ResNet-50](../papers/resnet.md) | 76.40 | - | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet50_8xb32_in1k.py) | [model](<>) \| [log](<>) |
| [ResNetXt-32x4d-50](../papers/resnext.md) | 77.55 | 93.75 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext50-32x4d_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/resnext50-32x4d_8xb32_in1k.log.json) |
| [SE-ResNet-50](../papers/seresnet.md) | 77.64 | 93.76 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/seresnet/seresnet50_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/seresnet50_8xb32_in1k.log.json) |
| [VGG-11](../papers/vgg.md) | 68.92 | 88.83 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg11_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/vgg11_8xb32_in1k.log.json) |
| [ShuffleNetV2 1.0x](../papers/shufflenet_v2.md) | 69.53 | 88.82 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/shufflenet_v2/shufflenet-v2-1x_16xb64_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/shufflenet-v2-1x_16xb64_in1k.json) |
**All above models are provided by Huawei Ascend group.**

View File

@ -78,6 +78,13 @@ You can switch between Chinese and English documentation in the lower-left corne
compatibility.md
faq.md
.. toctree::
:maxdepth: 1
:caption: Device Support
device/npu.md
.. toctree::
:caption: Language Switch

View File

@ -9,12 +9,19 @@ pre {
white-space: pre;
}
article.pytorch-article .section :not(dt) > code {
article.pytorch-article section code {
padding: .2em .4em;
background-color: #f3f4f7;
border-radius: 5px;
}
table.colwidths-auto td {
/* Disable the change in tables */
article.pytorch-article section table code {
padding: unset;
background-color: unset;
border-radius: unset;
}
table.autosummary td {
width: 50%
}

View File

@ -48,7 +48,6 @@ extensions = [
'sphinx.ext.intersphinx',
'sphinx.ext.napoleon',
'sphinx.ext.viewcode',
'sphinx_markdown_tables',
'myst_parser',
'sphinx_copybutton',
]
@ -214,7 +213,7 @@ intersphinx_mapping = {
'python': ('https://docs.python.org/3', None),
'numpy': ('https://numpy.org/doc/stable', None),
'torch': ('https://pytorch.org/docs/stable/', None),
'mmcv': ('https://mmcv.readthedocs.io/en/master/', None),
'mmcv': ('https://mmcv.readthedocs.io/zh_CN/latest/', None),
}

View File

@ -0,0 +1,34 @@
# NPU (华为昇腾)
## 使用方法
首先,请参考 {external+mmcv:doc}`教程 <get_started/build>` 安装带有 NPU 支持的 MMCV。
使用如下命令,可以利用 8 个 NPU 在机器上训练模型(以 ResNet 为例):
```shell
bash tools/dist_train.sh configs/cspnet/resnet50_8xb32_in1k.py 8 --device npu
```
或者,使用如下命令,在一个 NPU 上训练模型(以 ResNet 为例):
```shell
python tools/train.py configs/cspnet/resnet50_8xb32_in1k.py --device npu
```
## 经过验证的模型
| 模型 | Top-1 (%) | Top-5 (%) | 配置文件 | 相关下载 |
| :--------------------------------------------------------: | :-------: | :-------: | :------------------------------------------------------------: | :------------------------------------------------------------: |
| [CSPResNeXt50](../papers/cspnet.md) | 77.10 | 93.55 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/cspnet/cspresnext50_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/cspresnext50_8xb32_in1k.log.json) |
| [DenseNet121](../papers/densenet.md) | 72.62 | 91.04 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/densenet/densenet121_4xb256_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/densenet121_4xb256_in1k.log.json) |
| [EfficientNet-B4(AA + AdvProp)](../papers/efficientnet.md) | 75.55 | 92.86 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b4_8xb32-01norm_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/efficientnet-b4_8xb32-01norm_in1k.log.json) |
| [HRNet-W18](../papers/hrnet.md) | 77.01 | 93.46 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w18_4xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/hrnet-w18_4xb32_in1k.log.json) |
| [ResNetV1D-152](../papers/resnet.md) | 77.11 | 94.54 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnetv1d152_8xb32_in1k.py) | [model](<>) \| [log](<>) |
| [ResNet-50](../papers/resnet.md) | 76.40 | - | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet50_8xb32_in1k.py) | [model](<>) \| [log](<>) |
| [ResNetXt-32x4d-50](../papers/resnext.md) | 77.55 | 93.75 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext50-32x4d_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/resnext50-32x4d_8xb32_in1k.log.json) |
| [SE-ResNet-50](../papers/seresnet.md) | 77.64 | 93.76 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/seresnet/seresnet50_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/seresnet50_8xb32_in1k.log.json) |
| [VGG-11](../papers/vgg.md) | 68.92 | 88.83 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg11_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/vgg11_8xb32_in1k.log.json) |
| [ShuffleNetV2 1.0x](../papers/shufflenet_v2.md) | 69.53 | 88.82 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/shufflenet_v2/shufflenet-v2-1x_16xb64_in1k.py) | [model](<>) \| [log](<>) |
**以上所有模型权重及训练日志均由华为昇腾团队提供**

View File

@ -78,6 +78,13 @@ You can switch between Chinese and English documentation in the lower-left corne
faq.md
.. toctree::
:maxdepth: 1
:caption: 设备支持
device/npu.md
.. toctree::
:caption: 语言切换