[Docs] Add NPU support page. (#1149)
* init readme * [Docs] Finish the HUAWEI Ascend device support docs. Co-authored-by: mzr1996 <mzr1996@163.com>pull/1198/head
parent
17ed870fd1
commit
dd664ffcd4
|
@ -9,12 +9,19 @@ pre {
|
|||
white-space: pre;
|
||||
}
|
||||
|
||||
article.pytorch-article .section :not(dt) > code {
|
||||
article.pytorch-article section code {
|
||||
padding: .2em .4em;
|
||||
background-color: #f3f4f7;
|
||||
border-radius: 5px;
|
||||
}
|
||||
|
||||
table.colwidths-auto td {
|
||||
/* Disable the change in tables */
|
||||
article.pytorch-article section table code {
|
||||
padding: unset;
|
||||
background-color: unset;
|
||||
border-radius: unset;
|
||||
}
|
||||
|
||||
table.autosummary td {
|
||||
width: 50%
|
||||
}
|
||||
|
|
|
@ -48,7 +48,6 @@ extensions = [
|
|||
'sphinx.ext.intersphinx',
|
||||
'sphinx.ext.napoleon',
|
||||
'sphinx.ext.viewcode',
|
||||
'sphinx_markdown_tables',
|
||||
'myst_parser',
|
||||
'sphinx_copybutton',
|
||||
]
|
||||
|
|
|
@ -0,0 +1,34 @@
|
|||
# NPU (HUAWEI Ascend)
|
||||
|
||||
## Usage
|
||||
|
||||
Please install MMCV with NPU device support according to {external+mmcv:doc}`the tutorial <get_started/build>`.
|
||||
|
||||
Here we use 8 NPUs on your computer to train the model with the following command:
|
||||
|
||||
```shell
|
||||
bash tools/dist_train.sh configs/cspnet/resnet50_8xb32_in1k.py 8 --device npu
|
||||
```
|
||||
|
||||
Also, you can use only one NPU to trian the model with the following command:
|
||||
|
||||
```shell
|
||||
python tools/train.py configs/cspnet/resnet50_8xb32_in1k.py --device npu
|
||||
```
|
||||
|
||||
## Verified Models
|
||||
|
||||
| Model | Top-1 (%) | Top-5 (%) | Config | Download |
|
||||
| :--------------------------------------------------------: | :-------: | :-------: | :-----------------------------------------------------------: | :-------------------------------------------------------------: |
|
||||
| [CSPResNeXt50](../papers/cspnet.md) | 77.10 | 93.55 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/cspnet/cspresnext50_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/cspresnext50_8xb32_in1k.log.json) |
|
||||
| [DenseNet121](../papers/densenet.md) | 72.62 | 91.04 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/densenet/densenet121_4xb256_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/densenet121_4xb256_in1k.log.json) |
|
||||
| [EfficientNet-B4(AA + AdvProp)](../papers/efficientnet.md) | 75.55 | 92.86 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b4_8xb32-01norm_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/efficientnet-b4_8xb32-01norm_in1k.log.json) |
|
||||
| [HRNet-W18](../papers/hrnet.md) | 77.01 | 93.46 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w18_4xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/hrnet-w18_4xb32_in1k.log.json) |
|
||||
| [ResNetV1D-152](../papers/resnet.md) | 77.11 | 94.54 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnetv1d152_8xb32_in1k.py) | [model](<>) \| [log](<>) |
|
||||
| [ResNet-50](../papers/resnet.md) | 76.40 | - | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet50_8xb32_in1k.py) | [model](<>) \| [log](<>) |
|
||||
| [ResNetXt-32x4d-50](../papers/resnext.md) | 77.55 | 93.75 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext50-32x4d_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/resnext50-32x4d_8xb32_in1k.log.json) |
|
||||
| [SE-ResNet-50](../papers/seresnet.md) | 77.64 | 93.76 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/seresnet/seresnet50_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/seresnet50_8xb32_in1k.log.json) |
|
||||
| [VGG-11](../papers/vgg.md) | 68.92 | 88.83 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg11_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/vgg11_8xb32_in1k.log.json) |
|
||||
| [ShuffleNetV2 1.0x](../papers/shufflenet_v2.md) | 69.53 | 88.82 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/shufflenet_v2/shufflenet-v2-1x_16xb64_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/shufflenet-v2-1x_16xb64_in1k.json) |
|
||||
|
||||
**All above models are provided by Huawei Ascend group.**
|
|
@ -78,6 +78,13 @@ You can switch between Chinese and English documentation in the lower-left corne
|
|||
compatibility.md
|
||||
faq.md
|
||||
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
:caption: Device Support
|
||||
|
||||
device/npu.md
|
||||
|
||||
.. toctree::
|
||||
:caption: Language Switch
|
||||
|
||||
|
|
|
@ -9,12 +9,19 @@ pre {
|
|||
white-space: pre;
|
||||
}
|
||||
|
||||
article.pytorch-article .section :not(dt) > code {
|
||||
article.pytorch-article section code {
|
||||
padding: .2em .4em;
|
||||
background-color: #f3f4f7;
|
||||
border-radius: 5px;
|
||||
}
|
||||
|
||||
table.colwidths-auto td {
|
||||
/* Disable the change in tables */
|
||||
article.pytorch-article section table code {
|
||||
padding: unset;
|
||||
background-color: unset;
|
||||
border-radius: unset;
|
||||
}
|
||||
|
||||
table.autosummary td {
|
||||
width: 50%
|
||||
}
|
||||
|
|
|
@ -48,7 +48,6 @@ extensions = [
|
|||
'sphinx.ext.intersphinx',
|
||||
'sphinx.ext.napoleon',
|
||||
'sphinx.ext.viewcode',
|
||||
'sphinx_markdown_tables',
|
||||
'myst_parser',
|
||||
'sphinx_copybutton',
|
||||
]
|
||||
|
@ -214,7 +213,7 @@ intersphinx_mapping = {
|
|||
'python': ('https://docs.python.org/3', None),
|
||||
'numpy': ('https://numpy.org/doc/stable', None),
|
||||
'torch': ('https://pytorch.org/docs/stable/', None),
|
||||
'mmcv': ('https://mmcv.readthedocs.io/en/master/', None),
|
||||
'mmcv': ('https://mmcv.readthedocs.io/zh_CN/latest/', None),
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -0,0 +1,34 @@
|
|||
# NPU (华为昇腾)
|
||||
|
||||
## 使用方法
|
||||
|
||||
首先,请参考 {external+mmcv:doc}`教程 <get_started/build>` 安装带有 NPU 支持的 MMCV。
|
||||
|
||||
使用如下命令,可以利用 8 个 NPU 在机器上训练模型(以 ResNet 为例):
|
||||
|
||||
```shell
|
||||
bash tools/dist_train.sh configs/cspnet/resnet50_8xb32_in1k.py 8 --device npu
|
||||
```
|
||||
|
||||
或者,使用如下命令,在一个 NPU 上训练模型(以 ResNet 为例):
|
||||
|
||||
```shell
|
||||
python tools/train.py configs/cspnet/resnet50_8xb32_in1k.py --device npu
|
||||
```
|
||||
|
||||
## 经过验证的模型
|
||||
|
||||
| 模型 | Top-1 (%) | Top-5 (%) | 配置文件 | 相关下载 |
|
||||
| :--------------------------------------------------------: | :-------: | :-------: | :------------------------------------------------------------: | :------------------------------------------------------------: |
|
||||
| [CSPResNeXt50](../papers/cspnet.md) | 77.10 | 93.55 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/cspnet/cspresnext50_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/cspresnext50_8xb32_in1k.log.json) |
|
||||
| [DenseNet121](../papers/densenet.md) | 72.62 | 91.04 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/densenet/densenet121_4xb256_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/densenet121_4xb256_in1k.log.json) |
|
||||
| [EfficientNet-B4(AA + AdvProp)](../papers/efficientnet.md) | 75.55 | 92.86 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/efficientnet/efficientnet-b4_8xb32-01norm_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/efficientnet-b4_8xb32-01norm_in1k.log.json) |
|
||||
| [HRNet-W18](../papers/hrnet.md) | 77.01 | 93.46 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/hrnet/hrnet-w18_4xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/hrnet-w18_4xb32_in1k.log.json) |
|
||||
| [ResNetV1D-152](../papers/resnet.md) | 77.11 | 94.54 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnetv1d152_8xb32_in1k.py) | [model](<>) \| [log](<>) |
|
||||
| [ResNet-50](../papers/resnet.md) | 76.40 | - | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet50_8xb32_in1k.py) | [model](<>) \| [log](<>) |
|
||||
| [ResNetXt-32x4d-50](../papers/resnext.md) | 77.55 | 93.75 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/resnext/resnext50-32x4d_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/resnext50-32x4d_8xb32_in1k.log.json) |
|
||||
| [SE-ResNet-50](../papers/seresnet.md) | 77.64 | 93.76 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/seresnet/seresnet50_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/seresnet50_8xb32_in1k.log.json) |
|
||||
| [VGG-11](../papers/vgg.md) | 68.92 | 88.83 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/vgg/vgg11_8xb32_in1k.py) | [model](<>) \| [log](https://download.openmmlab.com/mmclassification/v0/device/npu/vgg11_8xb32_in1k.log.json) |
|
||||
| [ShuffleNetV2 1.0x](../papers/shufflenet_v2.md) | 69.53 | 88.82 | [config](https://github.com/open-mmlab/mmclassification/blob/master/configs/shufflenet_v2/shufflenet-v2-1x_16xb64_in1k.py) | [model](<>) \| [log](<>) |
|
||||
|
||||
**以上所有模型权重及训练日志均由华为昇腾团队提供**
|
|
@ -78,6 +78,13 @@ You can switch between Chinese and English documentation in the lower-left corne
|
|||
faq.md
|
||||
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
:caption: 设备支持
|
||||
|
||||
device/npu.md
|
||||
|
||||
|
||||
.. toctree::
|
||||
:caption: 语言切换
|
||||
|
||||
|
|
Loading…
Reference in New Issue