[Refactor] Refactor entry scripts `train.py` and `test.py`.
parent
65f3b2221d
commit
efaa93aae1
|
@ -10,6 +10,7 @@ from .dataset_wrappers import (ClassBalancedDataset, ConcatDataset,
|
|||
from .imagenet import ImageNet, ImageNet21k
|
||||
from .mnist import MNIST, FashionMNIST
|
||||
from .multi_label import MultiLabelDataset
|
||||
from .pipelines import * # noqa: F401,F403
|
||||
from .samplers import DistributedSampler, RepeatAugSampler
|
||||
from .voc import VOC
|
||||
|
||||
|
|
|
@ -1,8 +1,9 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from .collect_env import collect_env
|
||||
from .logger import get_root_logger, load_json_log
|
||||
from .setup_env import setup_multi_processes
|
||||
from .setup_env import register_all_modules, setup_multi_processes
|
||||
|
||||
__all__ = [
|
||||
'collect_env', 'get_root_logger', 'load_json_log', 'setup_multi_processes'
|
||||
'collect_env', 'get_root_logger', 'load_json_log', 'setup_multi_processes',
|
||||
'register_all_modules'
|
||||
]
|
||||
|
|
|
@ -1,10 +1,12 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import datetime
|
||||
import os
|
||||
import platform
|
||||
import warnings
|
||||
|
||||
import cv2
|
||||
import torch.multiprocessing as mp
|
||||
from mmengine import DefaultScope
|
||||
|
||||
|
||||
def setup_multi_processes(cfg):
|
||||
|
@ -45,3 +47,35 @@ def setup_multi_processes(cfg):
|
|||
f'overloaded, please further tune the variable for optimal '
|
||||
f'performance in your application as needed.')
|
||||
os.environ['MKL_NUM_THREADS'] = str(mkl_num_threads)
|
||||
|
||||
|
||||
def register_all_modules(init_default_scope: bool = True) -> None:
|
||||
"""Register all modules in mmcls into the registries.
|
||||
|
||||
Args:
|
||||
init_default_scope (bool): Whether initialize the mmcls default scope.
|
||||
If True, the global default scope will be set to `mmcls`, and all
|
||||
registries will build modules from mmcls's registry node. To
|
||||
understand more about the registry, please refer to
|
||||
https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/registry.md
|
||||
Defaults to True.
|
||||
""" # noqa
|
||||
import mmcls.core # noqa: F401,F403
|
||||
import mmcls.datasets # noqa: F401,F403
|
||||
import mmcls.metrics # noqa: F401,F403
|
||||
import mmcls.models # noqa: F401,F403
|
||||
|
||||
if not init_default_scope:
|
||||
return
|
||||
|
||||
current_scope = DefaultScope.get_current_instance()
|
||||
if current_scope is None:
|
||||
DefaultScope.get_instance('mmcls', scope_name='mmcls')
|
||||
elif current_scope.scope_name != 'mmcls':
|
||||
warnings.warn(f'The current default scope "{current_scope.scope_name}"'
|
||||
' is not "mmcls", `register_all_modules` will force the '
|
||||
'current default scope to be "mmcls". If this is not '
|
||||
'expected, please set `init_default_scope=False`.')
|
||||
# avoid name conflict
|
||||
new_instance_name = f'mmcls-{datetime.datetime.now()}'
|
||||
DefaultScope.get_instance(new_instance_name, scope_name='mmcls')
|
||||
|
|
|
@ -1,12 +1,47 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import datetime
|
||||
import multiprocessing as mp
|
||||
import os
|
||||
import platform
|
||||
import sys
|
||||
from unittest import TestCase
|
||||
|
||||
import cv2
|
||||
from mmcv import Config
|
||||
from mmengine import DefaultScope
|
||||
|
||||
from mmcls.utils import setup_multi_processes
|
||||
from mmcls.utils import register_all_modules, setup_multi_processes
|
||||
|
||||
|
||||
class TestSetupEnv(TestCase):
|
||||
|
||||
def test_register_all_modules(self):
|
||||
from mmcls.registry import DATASETS
|
||||
|
||||
# not init default scope
|
||||
sys.modules.pop('mmcls.datasets', None)
|
||||
sys.modules.pop('mmcls.datasets.custom', None)
|
||||
DATASETS._module_dict.pop('CustomDataset', None)
|
||||
self.assertFalse('CustomDataset' in DATASETS.module_dict)
|
||||
register_all_modules(init_default_scope=False)
|
||||
self.assertTrue('CustomDataset' in DATASETS.module_dict)
|
||||
|
||||
# init default scope
|
||||
sys.modules.pop('mmcls.datasets')
|
||||
sys.modules.pop('mmcls.datasets.custom')
|
||||
DATASETS._module_dict.pop('CustomDataset', None)
|
||||
self.assertFalse('CustomDataset' in DATASETS.module_dict)
|
||||
register_all_modules(init_default_scope=True)
|
||||
self.assertTrue('CustomDataset' in DATASETS.module_dict)
|
||||
self.assertEqual(DefaultScope.get_current_instance().scope_name,
|
||||
'mmcls')
|
||||
|
||||
# init default scope when another scope is init
|
||||
name = f'test-{datetime.datetime.now()}'
|
||||
DefaultScope.get_instance(name, scope_name='test')
|
||||
with self.assertWarnsRegex(
|
||||
Warning, 'The current default scope "test" is not "mmcls"'):
|
||||
register_all_modules(init_default_scope=True)
|
||||
|
||||
|
||||
def test_setup_multi_processes():
|
||||
|
|
235
tools/test.py
235
tools/test.py
|
@ -1,55 +1,22 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import argparse
|
||||
import os
|
||||
import warnings
|
||||
from numbers import Number
|
||||
import os.path as osp
|
||||
|
||||
import mmcv
|
||||
import numpy as np
|
||||
import torch
|
||||
from mmcv import DictAction
|
||||
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
|
||||
from mmcv.runner import (get_dist_info, init_dist, load_checkpoint,
|
||||
wrap_fp16_model)
|
||||
from mmengine.config import Config, DictAction
|
||||
from mmengine.runner import Runner
|
||||
|
||||
from mmcls.apis import multi_gpu_test, single_gpu_test
|
||||
from mmcls.datasets import build_dataloader, build_dataset
|
||||
from mmcls.models import build_classifier
|
||||
from mmcls.utils import get_root_logger, setup_multi_processes
|
||||
from mmcls.utils import register_all_modules
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description='mmcls test model')
|
||||
parser = argparse.ArgumentParser(
|
||||
description='MMCLS test (and eval) a model')
|
||||
parser.add_argument('config', help='test config file path')
|
||||
parser.add_argument('checkpoint', help='checkpoint file')
|
||||
parser.add_argument('--out', help='output result file')
|
||||
out_options = ['class_scores', 'pred_score', 'pred_label', 'pred_class']
|
||||
parser.add_argument(
|
||||
'--out-items',
|
||||
nargs='+',
|
||||
default=['all'],
|
||||
choices=out_options + ['none', 'all'],
|
||||
help='Besides metrics, what items will be included in the output '
|
||||
f'result file. You can choose some of ({", ".join(out_options)}), '
|
||||
'or use "all" to include all above, or use "none" to disable all of '
|
||||
'above. Defaults to output all.',
|
||||
metavar='')
|
||||
parser.add_argument(
|
||||
'--metrics',
|
||||
type=str,
|
||||
nargs='+',
|
||||
help='evaluation metrics, which depends on the dataset, e.g., '
|
||||
'"accuracy", "precision", "recall", "f1_score", "support" for single '
|
||||
'label dataset, and "mAP", "CP", "CR", "CF1", "OP", "OR", "OF1" for '
|
||||
'multi-label dataset')
|
||||
parser.add_argument('--show', action='store_true', help='show results')
|
||||
parser.add_argument(
|
||||
'--show-dir', help='directory where painted images will be saved')
|
||||
parser.add_argument(
|
||||
'--gpu-collect',
|
||||
action='store_true',
|
||||
help='whether to use gpu to collect results')
|
||||
parser.add_argument('--tmpdir', help='tmp dir for writing some results')
|
||||
'--work-dir',
|
||||
help='the directory to save the file containing evaluation metrics')
|
||||
parser.add_argument(
|
||||
'--cfg-options',
|
||||
nargs='+',
|
||||
|
@ -60,193 +27,47 @@ def parse_args():
|
|||
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
|
||||
'Note that the quotation marks are necessary and that no white space '
|
||||
'is allowed.')
|
||||
parser.add_argument(
|
||||
'--metric-options',
|
||||
nargs='+',
|
||||
action=DictAction,
|
||||
default={},
|
||||
help='custom options for evaluation, the key-value pair in xxx=yyy '
|
||||
'format will be parsed as a dict metric_options for dataset.evaluate()'
|
||||
' function.')
|
||||
parser.add_argument(
|
||||
'--show-options',
|
||||
nargs='+',
|
||||
action=DictAction,
|
||||
help='custom options for show_result. key-value pair in xxx=yyy.'
|
||||
'Check available options in `model.show_result`.')
|
||||
parser.add_argument(
|
||||
'--gpu-ids',
|
||||
type=int,
|
||||
nargs='+',
|
||||
help='(Deprecated, please use --gpu-id) ids of gpus to use '
|
||||
'(only applicable to non-distributed testing)')
|
||||
parser.add_argument(
|
||||
'--gpu-id',
|
||||
type=int,
|
||||
default=0,
|
||||
help='id of gpu to use '
|
||||
'(only applicable to non-distributed testing)')
|
||||
parser.add_argument(
|
||||
'--launcher',
|
||||
choices=['none', 'pytorch', 'slurm', 'mpi'],
|
||||
default='none',
|
||||
help='job launcher')
|
||||
parser.add_argument('--local_rank', type=int, default=0)
|
||||
parser.add_argument(
|
||||
'--device',
|
||||
choices=['cpu', 'cuda', 'ipu'],
|
||||
default='cuda',
|
||||
help='device used for testing')
|
||||
args = parser.parse_args()
|
||||
if 'LOCAL_RANK' not in os.environ:
|
||||
os.environ['LOCAL_RANK'] = str(args.local_rank)
|
||||
|
||||
assert args.metrics or args.out, \
|
||||
'Please specify at least one of output path and evaluation metrics.'
|
||||
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
|
||||
cfg = mmcv.Config.fromfile(args.config)
|
||||
# register all modules in mmcls into the registries
|
||||
# do not init the default scope here because it will be init in the runner
|
||||
register_all_modules(init_default_scope=False)
|
||||
|
||||
# load config
|
||||
cfg = Config.fromfile(args.config)
|
||||
cfg.launcher = args.launcher
|
||||
if args.cfg_options is not None:
|
||||
cfg.merge_from_dict(args.cfg_options)
|
||||
|
||||
# set multi-process settings
|
||||
setup_multi_processes(cfg)
|
||||
# work_dir is determined in this priority: CLI > segment in file > filename
|
||||
if args.work_dir is not None:
|
||||
# update configs according to CLI args if args.work_dir is not None
|
||||
cfg.work_dir = args.work_dir
|
||||
elif cfg.get('work_dir', None) is None:
|
||||
# use config filename as default work_dir if cfg.work_dir is None
|
||||
cfg.work_dir = osp.join('./work_dirs',
|
||||
osp.splitext(osp.basename(args.config))[0])
|
||||
|
||||
# set cudnn_benchmark
|
||||
if cfg.get('cudnn_benchmark', False):
|
||||
torch.backends.cudnn.benchmark = True
|
||||
cfg.model.pretrained = None
|
||||
cfg.load_from = args.checkpoint
|
||||
|
||||
if args.gpu_ids is not None:
|
||||
cfg.gpu_ids = args.gpu_ids[0:1]
|
||||
warnings.warn('`--gpu-ids` is deprecated, please use `--gpu-id`. '
|
||||
'Because we only support single GPU mode in '
|
||||
'non-distributed testing. Use the first GPU '
|
||||
'in `gpu_ids` now.')
|
||||
else:
|
||||
cfg.gpu_ids = [args.gpu_id]
|
||||
# build the runner from config
|
||||
runner = Runner.from_cfg(cfg)
|
||||
|
||||
# init distributed env first, since logger depends on the dist info.
|
||||
if args.launcher == 'none':
|
||||
distributed = False
|
||||
else:
|
||||
distributed = True
|
||||
init_dist(args.launcher, **cfg.dist_params)
|
||||
|
||||
dataset = build_dataset(cfg.data.test, default_args=dict(test_mode=True))
|
||||
|
||||
# build the dataloader
|
||||
# The default loader config
|
||||
loader_cfg = dict(
|
||||
# cfg.gpus will be ignored if distributed
|
||||
num_gpus=1 if args.device == 'ipu' else len(cfg.gpu_ids),
|
||||
dist=distributed,
|
||||
round_up=True,
|
||||
)
|
||||
# The overall dataloader settings
|
||||
loader_cfg.update({
|
||||
k: v
|
||||
for k, v in cfg.data.items() if k not in [
|
||||
'train', 'val', 'test', 'train_dataloader', 'val_dataloader',
|
||||
'test_dataloader'
|
||||
]
|
||||
})
|
||||
test_loader_cfg = {
|
||||
**loader_cfg,
|
||||
'shuffle': False, # Not shuffle by default
|
||||
'sampler_cfg': None, # Not use sampler by default
|
||||
**cfg.data.get('test_dataloader', {}),
|
||||
}
|
||||
# the extra round_up data will be removed during gpu/cpu collect
|
||||
data_loader = build_dataloader(dataset, **test_loader_cfg)
|
||||
|
||||
# build the model and load checkpoint
|
||||
model = build_classifier(cfg.model)
|
||||
fp16_cfg = cfg.get('fp16', None)
|
||||
if fp16_cfg is not None:
|
||||
wrap_fp16_model(model)
|
||||
checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
|
||||
|
||||
if 'CLASSES' in checkpoint.get('meta', {}):
|
||||
CLASSES = checkpoint['meta']['CLASSES']
|
||||
else:
|
||||
from mmcls.datasets import ImageNet
|
||||
warnings.simplefilter('once')
|
||||
warnings.warn('Class names are not saved in the checkpoint\'s '
|
||||
'meta data, use imagenet by default.')
|
||||
CLASSES = ImageNet.CLASSES
|
||||
|
||||
if not distributed:
|
||||
if args.device == 'cpu':
|
||||
model = model.cpu()
|
||||
elif args.device == 'ipu':
|
||||
from mmcv.device.ipu import cfg2options, ipu_model_wrapper
|
||||
opts = cfg2options(cfg.runner.get('options_cfg', {}))
|
||||
if fp16_cfg is not None:
|
||||
model.half()
|
||||
model = ipu_model_wrapper(model, opts, fp16_cfg=fp16_cfg)
|
||||
data_loader.init(opts['inference'])
|
||||
else:
|
||||
model = MMDataParallel(model, device_ids=cfg.gpu_ids)
|
||||
if not model.device_ids:
|
||||
assert mmcv.digit_version(mmcv.__version__) >= (1, 4, 4), \
|
||||
'To test with CPU, please confirm your mmcv version ' \
|
||||
'is not lower than v1.4.4'
|
||||
model.CLASSES = CLASSES
|
||||
show_kwargs = {} if args.show_options is None else args.show_options
|
||||
outputs = single_gpu_test(model, data_loader, args.show, args.show_dir,
|
||||
**show_kwargs)
|
||||
else:
|
||||
model = MMDistributedDataParallel(
|
||||
model.cuda(),
|
||||
device_ids=[torch.cuda.current_device()],
|
||||
broadcast_buffers=False)
|
||||
outputs = multi_gpu_test(model, data_loader, args.tmpdir,
|
||||
args.gpu_collect)
|
||||
|
||||
rank, _ = get_dist_info()
|
||||
if rank == 0:
|
||||
results = {}
|
||||
logger = get_root_logger()
|
||||
if args.metrics:
|
||||
eval_results = dataset.evaluate(
|
||||
results=outputs,
|
||||
metric=args.metrics,
|
||||
metric_options=args.metric_options,
|
||||
logger=logger)
|
||||
results.update(eval_results)
|
||||
for k, v in eval_results.items():
|
||||
if isinstance(v, np.ndarray):
|
||||
v = [round(out, 2) for out in v.tolist()]
|
||||
elif isinstance(v, Number):
|
||||
v = round(v, 2)
|
||||
else:
|
||||
raise ValueError(f'Unsupport metric type: {type(v)}')
|
||||
print(f'\n{k} : {v}')
|
||||
if args.out:
|
||||
if 'none' not in args.out_items:
|
||||
scores = np.vstack(outputs)
|
||||
pred_score = np.max(scores, axis=1)
|
||||
pred_label = np.argmax(scores, axis=1)
|
||||
pred_class = [CLASSES[lb] for lb in pred_label]
|
||||
res_items = {
|
||||
'class_scores': scores,
|
||||
'pred_score': pred_score,
|
||||
'pred_label': pred_label,
|
||||
'pred_class': pred_class
|
||||
}
|
||||
if 'all' in args.out_items:
|
||||
results.update(res_items)
|
||||
else:
|
||||
for key in args.out_items:
|
||||
results[key] = res_items[key]
|
||||
print(f'\ndumping results to {args.out}')
|
||||
mmcv.dump(results, args.out)
|
||||
# start testing
|
||||
runner.test()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
171
tools/train.py
171
tools/train.py
|
@ -1,26 +1,16 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import argparse
|
||||
import copy
|
||||
import os
|
||||
import os.path as osp
|
||||
import time
|
||||
import warnings
|
||||
|
||||
import mmcv
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from mmcv import Config, DictAction
|
||||
from mmcv.runner import get_dist_info, init_dist
|
||||
from mmengine.config import Config, DictAction
|
||||
from mmengine.runner import Runner
|
||||
|
||||
from mmcls import __version__
|
||||
from mmcls.apis import init_random_seed, set_random_seed, train_model
|
||||
from mmcls.datasets import build_dataset
|
||||
from mmcls.models import build_classifier
|
||||
from mmcls.utils import collect_env, get_root_logger, setup_multi_processes
|
||||
from mmcls.utils import register_all_modules
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description='Train a model')
|
||||
parser = argparse.ArgumentParser(description='Train a classifier')
|
||||
parser.add_argument('config', help='train config file path')
|
||||
parser.add_argument('--work-dir', help='the dir to save logs and models')
|
||||
parser.add_argument(
|
||||
|
@ -29,40 +19,6 @@ def parse_args():
|
|||
'--no-validate',
|
||||
action='store_true',
|
||||
help='whether not to evaluate the checkpoint during training')
|
||||
group_gpus = parser.add_mutually_exclusive_group()
|
||||
group_gpus.add_argument(
|
||||
'--device', help='device used for training. (Deprecated)')
|
||||
group_gpus.add_argument(
|
||||
'--gpus',
|
||||
type=int,
|
||||
help='(Deprecated, please use --gpu-id) number of gpus to use '
|
||||
'(only applicable to non-distributed training)')
|
||||
group_gpus.add_argument(
|
||||
'--gpu-ids',
|
||||
type=int,
|
||||
nargs='+',
|
||||
help='(Deprecated, please use --gpu-id) ids of gpus to use '
|
||||
'(only applicable to non-distributed training)')
|
||||
group_gpus.add_argument(
|
||||
'--gpu-id',
|
||||
type=int,
|
||||
default=0,
|
||||
help='id of gpu to use '
|
||||
'(only applicable to non-distributed training)')
|
||||
parser.add_argument(
|
||||
'--ipu-replicas',
|
||||
type=int,
|
||||
default=None,
|
||||
help='num of ipu replicas to use')
|
||||
parser.add_argument('--seed', type=int, default=None, help='random seed')
|
||||
parser.add_argument(
|
||||
'--diff-seed',
|
||||
action='store_true',
|
||||
help='Whether or not set different seeds for different ranks')
|
||||
parser.add_argument(
|
||||
'--deterministic',
|
||||
action='store_true',
|
||||
help='whether to set deterministic options for CUDNN backend.')
|
||||
parser.add_argument(
|
||||
'--cfg-options',
|
||||
nargs='+',
|
||||
|
@ -86,20 +42,34 @@ def parse_args():
|
|||
return args
|
||||
|
||||
|
||||
def merge_args(cfg, args):
|
||||
"""Merge CLI arguments to config."""
|
||||
if args.resume_from is not None:
|
||||
cfg.resume = True
|
||||
cfg.load_from = args.resume_from
|
||||
|
||||
if args.no_validate is not None:
|
||||
cfg.val_cfg = None
|
||||
cfg.val_dataloader = None
|
||||
cfg.val_evaluator = None
|
||||
|
||||
return cfg
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
|
||||
# register all modules in mmcls into the registries
|
||||
# do not init the default scope here because it will be init in the runner
|
||||
register_all_modules(init_default_scope=False)
|
||||
|
||||
# load config
|
||||
cfg = Config.fromfile(args.config)
|
||||
cfg = merge_args(cfg, args)
|
||||
cfg.launcher = args.launcher
|
||||
if args.cfg_options is not None:
|
||||
cfg.merge_from_dict(args.cfg_options)
|
||||
|
||||
# set multi-process settings
|
||||
setup_multi_processes(cfg)
|
||||
|
||||
# set cudnn_benchmark
|
||||
if cfg.get('cudnn_benchmark', False):
|
||||
torch.backends.cudnn.benchmark = True
|
||||
|
||||
# work_dir is determined in this priority: CLI > segment in file > filename
|
||||
if args.work_dir is not None:
|
||||
# update configs according to CLI args if args.work_dir is not None
|
||||
|
@ -108,95 +78,12 @@ def main():
|
|||
# use config filename as default work_dir if cfg.work_dir is None
|
||||
cfg.work_dir = osp.join('./work_dirs',
|
||||
osp.splitext(osp.basename(args.config))[0])
|
||||
if args.resume_from is not None:
|
||||
cfg.resume_from = args.resume_from
|
||||
if args.gpus is not None:
|
||||
cfg.gpu_ids = range(1)
|
||||
warnings.warn('`--gpus` is deprecated because we only support '
|
||||
'single GPU mode in non-distributed training. '
|
||||
'Use `gpus=1` now.')
|
||||
if args.gpu_ids is not None:
|
||||
cfg.gpu_ids = args.gpu_ids[0:1]
|
||||
warnings.warn('`--gpu-ids` is deprecated, please use `--gpu-id`. '
|
||||
'Because we only support single GPU mode in '
|
||||
'non-distributed training. Use the first GPU '
|
||||
'in `gpu_ids` now.')
|
||||
if args.gpus is None and args.gpu_ids is None:
|
||||
cfg.gpu_ids = [args.gpu_id]
|
||||
|
||||
if args.ipu_replicas is not None:
|
||||
cfg.ipu_replicas = args.ipu_replicas
|
||||
args.device = 'ipu'
|
||||
# build the runner from config
|
||||
runner = Runner.from_cfg(cfg)
|
||||
|
||||
# init distributed env first, since logger depends on the dist info.
|
||||
if args.launcher == 'none':
|
||||
distributed = False
|
||||
else:
|
||||
distributed = True
|
||||
init_dist(args.launcher, **cfg.dist_params)
|
||||
_, world_size = get_dist_info()
|
||||
cfg.gpu_ids = range(world_size)
|
||||
|
||||
# create work_dir
|
||||
mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
|
||||
# dump config
|
||||
cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config)))
|
||||
# init the logger before other steps
|
||||
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
|
||||
log_file = osp.join(cfg.work_dir, f'{timestamp}.log')
|
||||
logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)
|
||||
|
||||
# init the meta dict to record some important information such as
|
||||
# environment info and seed, which will be logged
|
||||
meta = dict()
|
||||
# log env info
|
||||
env_info_dict = collect_env()
|
||||
env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()])
|
||||
dash_line = '-' * 60 + '\n'
|
||||
logger.info('Environment info:\n' + dash_line + env_info + '\n' +
|
||||
dash_line)
|
||||
meta['env_info'] = env_info
|
||||
|
||||
# log some basic info
|
||||
logger.info(f'Distributed training: {distributed}')
|
||||
logger.info(f'Config:\n{cfg.pretty_text}')
|
||||
|
||||
# set random seeds
|
||||
seed = init_random_seed(args.seed)
|
||||
seed = seed + dist.get_rank() if args.diff_seed else seed
|
||||
logger.info(f'Set random seed to {seed}, '
|
||||
f'deterministic: {args.deterministic}')
|
||||
set_random_seed(seed, deterministic=args.deterministic)
|
||||
cfg.seed = seed
|
||||
meta['seed'] = seed
|
||||
|
||||
model = build_classifier(cfg.model)
|
||||
model.init_weights()
|
||||
|
||||
datasets = [build_dataset(cfg.data.train)]
|
||||
if len(cfg.workflow) == 2:
|
||||
val_dataset = copy.deepcopy(cfg.data.val)
|
||||
val_dataset.pipeline = cfg.data.train.pipeline
|
||||
datasets.append(build_dataset(val_dataset))
|
||||
|
||||
# save mmcls version, config file content and class names in
|
||||
# runner as meta data
|
||||
meta.update(
|
||||
dict(
|
||||
mmcls_version=__version__,
|
||||
config=cfg.pretty_text,
|
||||
CLASSES=datasets[0].CLASSES))
|
||||
|
||||
# add an attribute for visualization convenience
|
||||
train_model(
|
||||
model,
|
||||
datasets,
|
||||
cfg,
|
||||
distributed=distributed,
|
||||
validate=(not args.no_validate),
|
||||
timestamp=timestamp,
|
||||
device=args.device,
|
||||
meta=meta)
|
||||
# start training
|
||||
runner.train()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
Loading…
Reference in New Issue