* add mytrain.py for test
* test before layers
* test attr in layers
* test classifier
* delete mytrain.py
* add patchembed and hybridembed
* add patchembed and hybridembed to __init__
* test patchembed and hybridembed
* fix some comments
* Refactor Mobilenetv3 structure and add ConvClsHead.
* Change model's name from 'MobileNetv3' to 'MobileNetV3'
* Modify configs for MobileNetV3 on CIFAR10.
And add MobileNetV3 configs for imagenet
* Fix activate setting bugs in MobileNetV3.
And remove bias in SELayer.
* Modify unittest
* Remove useless config and file.
* Fix mobilenetv3-large arch setting
* Add dropout option in ConvClsHead
* Fix MobilenetV3 structure according to torchvision version.
1. Remove with_expand_conv option in InvertedResidual, it should be decided by channels.
2. Revert activation function, should before SE layer.
* Format code.
* Rename MobilenetV3 arch "big" to "large".
* Add mobilenetv3_small torchvision training recipe
* Modify default `out_indices` of MobilenetV3, now it will change
according to `arch` if not specified.
* Add MobilenetV3 large config.
* Add mobilenetv3 README
* Modify InvertedResidual unit test.
* Refactor ConvClsHead to StackedLinearClsHead, and add unit tests.
* Add unit test for `simple_test` of `StackedLinearClsHead`.
* Fix typo
Co-authored-by: Yidi Shao <ydshao@smail.nju.edu.cn>
* add mytrain.py for test
* test before layers
* test attr in layers
* test classifier
* delete mytrain.py
* add rand_bbox_minmax rand_bbox and cutmix_bbox_and_lam to BaseCutMixLayer
* add mixup_prob to BatchMixupLayer
* add cutmixup
* add cutmixup to __init__
* test classifier with cutmixup
* delete some comments
* set mixup_prob default to 1.0
* add cutmixup to classifier
* use cutmixup
* use cutmixup
* fix bugs
* test cutmixup
* move mixup and cutmix to augment
* inherit from BaseAugment
* add BaseAugment
* inherit from BaseAugment
* rename identity.py
* add @
* build augment
* register module
* rename to augment.py
* delete cutmixup.py
* do not inherit from BaseAugment
* add augments
* use augments in classifier
* prob default to 1.0
* add comments
* use augments
* use augments
* assert sum of augmentation probabilities should equal to 1
* augmentation probabilities equal to 1
* calculate Identity prob
* replace xxx with self.xxx
* add comments
* sync with augments
* for BC-breaking
* delete useless comments in mixup.py
* Add mixup option
* Modify the structure of mixup and add configs
* Clean configs
* Add test for mixup and SoftCrossEntropyLoss
* Add simple test for ImageClassifier
* Fix bug in test_losses.py
* Add assertion in CrossEntropyLoss