* GlabelAveragePooling support 1d, 2d and 3d by param, and add neck test
* Imporve neck test
* Change 'mode' attribute in GAP to 'dim', and add docstring
* add mytrain.py for test
* test before layers
* test attr in layers
* test classifier
* delete mytrain.py
* set cal_acc in ClsHead defaults to False
* set cal_acc defaults to False
* use *args, **kwargs instead
* change bs16 to 3 in test_image_classifier_vit
* fix some comments
* change cal_acc=True
* test LinearClsHead
* add imagenet bs 4096
* add vit_base_patch16_224_finetune
* add vit_base_patch16_224_pretrain
* add vit_base_patch16_384_finetune
* add vit_base_patch16_384_finetune
* add vit_b_p16_224_finetune_imagenet
* add vit_b_p16_224_pretrain_imagenet
* add vit_b_p16_384_finetune_imagenet
* add vit
* add vit
* add vit head
* vit unitest
* keep up with ClsHead
* test vit
* add flag to determiine whether to calculate acc during training
* Changes related to mmcv1.3.0
* change checkpoint saving interval to 10
* add label smooth
* default_runtime.py recovery
* docformatter
* docformatter
* delete 2 lines of comments
* delete configs/_base_/schedules/imagenet_bs4096.py
* add configs/_base_/schedules/imagenet_bs2048_AdamW.py
* rename imagenet_bs4096.py to imagenet_bs2048_AdamW.py
* add AutoAugment
* fix weight decay in vit
* change eval interval to 10
* add mytrain.py for test
* test before layers
* test attr in layers
* test classifier
* delete mytrain.py
* delete @torch.jit.ignore
* change eval interval back to 1
* add some comments to imagenet_bs2048_AdamW
* add some comments
* add convert_to_one_hot
* add test_label_smooth_loss
* add my label_smooth_loss
* fix CELoss bug
* test new label smooth loss
* LabelSmoothLoss downward compatibility
* add some comments
* remove the old version of LabelSmoothLoss
* add some comments
* add some comments
* add some comments
* add label smooth to config
* Add mixup option
* Modify the structure of mixup and add configs
* Clean configs
* Add test for mixup and SoftCrossEntropyLoss
* Add simple test for ImageClassifier
* Fix bug in test_losses.py
* Add assertion in CrossEntropyLoss
* resolve conflicts
add heads and config for multilabel tasks
* minor change
* remove evaluating mAP in head
* add baseline config
* add configs
* reserve only one config
* minor change
* fix minor bug
* minor change
* minor change
* add unittests and fix docstrings
* support thr
* replace thrs with thr
* fix docstring
* minor change
* revise according to comments
* revised according to comments
* revise according to comments
* rewrite basedataset.evaluate to avoid duplicate calculation
* minor change
* change thr to thrs
* add more unit test
* support support, support class-wise evaluation results and move eval_metrics.py
* Fix docstring
* change average to be non-optional
* revise according to comments
* add more unittest
* add bce loss for multilabel task
* minor change
* apply class wise sum
* fix docstring
* do not apply sum over classes and fix docstring
* fix docstring
* fix weight shape
* fix weight shape
* fix docstring
* fix linting issue
Co-authored-by: Y. Xiong <xiongyuxy@gmail.com>
* add focal loss
* apply class wise sum
* fix doctring
* do not apply sum over classes and fix docstring
* fix docstring
* fix weight shape
* fix weight shape
* add macro-averaged precision,recall,f1 options in evaluation
* remove unnecessary comments
* Revise according to comments
* Revise according to comments
* add model inference on single image
* rm --eval
* revise doc
* add inference tool and demo
* fix linting
* rename inference_image to inference_model
* infer pred_label and pred_score
* fix linting
* add docstr for inference
* add remove_keys
* add doc for inference
* dump results rather than outputs
* add class_names
* add related infer scripts
* add demo image and the first part of colab tutorial
* conduct evaluation in dataset
* return lst in simple_test
* compuate topk accuracy with numpy
* return outputs in test api
* merge inference and evaluation tool
* fix typo
* rm gt_labels in test conifg
* get gt_labels during evaluation
* sperate the ipython notebook to another PR
* return tensor for onnx_export
* detach var in simple_test
* rm inference script
* rm inference script
* construct data dict to replace LoadImage
* print first predicted result if args.out is None
* modify test_pipeline in inference
* refactor class_names of imagenet
* set class_to_idx as a property in base dataset
* output pred_class during inference
* remove unused docstr