# Copyright (c) OpenMMLab. All rights reserved. import copy import os.path as osp import unittest import numpy as np import torch from mmengine.data import LabelData from mmcls.engine import ClsDataSample from mmcls.datasets.pipelines import PackClsInputs class TestPackClsInputs(unittest.TestCase): def setUp(self): """Setup the model and optimizer which are used in every test method. TestCase calls functions in this order: setUp() -> testMethod() -> tearDown() -> cleanUp() """ data_prefix = osp.join(osp.dirname(__file__), '../../data') img_path = osp.join(data_prefix, 'color.jpg') rng = np.random.RandomState(0) self.results1 = { 'sample_idx': 1, 'img_path': img_path, 'ori_height': 300, 'ori_width': 400, 'height': 600, 'width': 800, 'scale_factor': 2.0, 'flip': False, 'img': rng.rand(300, 400), 'gt_label': rng.randint(3, ) } self.meta_keys = ('sample_idx', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'flip') def test_transform(self): transform = PackClsInputs(meta_keys=self.meta_keys) results = transform(copy.deepcopy(self.results1)) self.assertIn('inputs', results) self.assertIsInstance(results['inputs'], torch.Tensor) self.assertIn('data_sample', results) self.assertIsInstance(results['data_sample'], ClsDataSample) data_sample = results['data_sample'] self.assertIsInstance(data_sample.gt_label, LabelData) def test_repr(self): transform = PackClsInputs(meta_keys=self.meta_keys) self.assertEqual( repr(transform), f'PackClsInputs(meta_keys={self.meta_keys})')