# Model Serving In order to serve an `MMClassification` model with [`TorchServe`](https://pytorch.org/serve/), you can follow the steps: ## 1. Convert model from MMClassification to TorchServe ```shell python tools/deployment/mmcls2torchserve.py ${CONFIG_FILE} ${CHECKPOINT_FILE} \ --output-folder ${MODEL_STORE} \ --model-name ${MODEL_NAME} ``` **Note**: ${MODEL_STORE} needs to be an absolute path to a folder. ## 2. Build `mmcls-serve` docker image ```shell docker build -t mmcls-serve:latest docker/serve/ ``` ## 3. Run `mmcls-serve` Check the official docs for [running TorchServe with docker](https://github.com/pytorch/serve/blob/master/docker/README.md#running-torchserve-in-a-production-docker-environment). In order to run in GPU, you need to install [nvidia-docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). You can omit the `--gpus` argument in order to run in GPU. Example: ```shell docker run --rm \ --cpus 8 \ --gpus device=0 \ -p8080:8080 -p8081:8081 -p8082:8082 \ --mount type=bind,source=$MODEL_STORE,target=/home/model-server/model-store \ mmcls-serve:latest ``` [Read the docs](https://github.com/pytorch/serve/blob/master/docs/rest_api.md) about the Inference (8080), Management (8081) and Metrics (8082) APis ## 4. Test deployment ```shell curl -O https://raw.githubusercontent.com/pytorch/serve/master/docs/images/3dogs.jpg curl http://127.0.0.1:8080/predictions/${MODEL_NAME} -T 3dogs.jpg ``` You should obtain a respose similar to: ```json { "pred_label": 245, "pred_score": 0.5536593794822693, "pred_class": "French bulldog" } ```