import warnings import matplotlib.pyplot as plt import mmcv import numpy as np import torch from mmcv.parallel import collate, scatter from mmcv.runner import load_checkpoint from mmcls.datasets.pipelines import Compose from mmcls.models import build_classifier def init_model(config, checkpoint=None, device='cuda:0', options=None): """Initialize a classifier from config file. Args: config (str or :obj:`mmcv.Config`): Config file path or the config object. checkpoint (str, optional): Checkpoint path. If left as None, the model will not load any weights. options (dict): Options to override some settings in the used config. Returns: nn.Module: The constructed classifier. """ if isinstance(config, str): config = mmcv.Config.fromfile(config) elif not isinstance(config, mmcv.Config): raise TypeError('config must be a filename or Config object, ' f'but got {type(config)}') if options is not None: config.merge_from_dict(options) config.model.pretrained = None model = build_classifier(config.model) if checkpoint is not None: map_loc = 'cpu' if device == 'cpu' else None checkpoint = load_checkpoint(model, checkpoint, map_location=map_loc) if 'CLASSES' in checkpoint['meta']: model.CLASSES = checkpoint['meta']['CLASSES'] else: from mmcls.datasets import ImageNet warnings.simplefilter('once') warnings.warn('Class names are not saved in the checkpoint\'s ' 'meta data, use imagenet by default.') model.CLASSES = ImageNet.CLASSES model.cfg = config # save the config in the model for convenience model.to(device) model.eval() return model def inference_model(model, img): """Inference image(s) with the classifier. Args: model (nn.Module): The loaded classifier. img (str/ndarray): The image filename or loaded image. Returns: result (dict): The classification results that contains `class_name`, `pred_label` and `pred_score`. """ cfg = model.cfg device = next(model.parameters()).device # model device # build the data pipeline if isinstance(img, str): if cfg.data.test.pipeline[0]['type'] != 'LoadImageFromFile': cfg.data.test.pipeline.insert(0, dict(type='LoadImageFromFile')) data = dict(img_info=dict(filename=img), img_prefix=None) else: if cfg.data.test.pipeline[0]['type'] == 'LoadImageFromFile': cfg.data.test.pipeline.pop(0) data = dict(img=img) test_pipeline = Compose(cfg.data.test.pipeline) data = test_pipeline(data) data = collate([data], samples_per_gpu=1) if next(model.parameters()).is_cuda: # scatter to specified GPU data = scatter(data, [device])[0] # forward the model with torch.no_grad(): scores = model(return_loss=False, **data) pred_score = np.max(scores, axis=1)[0] pred_label = np.argmax(scores, axis=1)[0] result = {'pred_label': pred_label, 'pred_score': float(pred_score)} result['pred_class'] = model.CLASSES[result['pred_label']] return result def show_result_pyplot(model, img, result, fig_size=(15, 10)): """Visualize the classification results on the image. Args: model (nn.Module): The loaded classifier. img (str or np.ndarray): Image filename or loaded image. result (list): The classification result. fig_size (tuple): Figure size of the pyplot figure. """ if hasattr(model, 'module'): model = model.module img = model.show_result(img, result, show=False) plt.figure(figsize=fig_size) plt.imshow(mmcv.bgr2rgb(img)) plt.show()