# How to Pretrain with Custom Dataset - [How to Pretrain with Custom Dataset](#how-to-pretrain-with-custom-dataset) - [Train MAE on Custom Dataset](#train-mae-on-custom-dataset) - [Step-1: Get the path of custom dataset](#step-1-get-the-path-of-custom-dataset) - [Step-2: Choose one config as template](#step-2-choose-one-config-as-template) - [Step-3: Edit the dataset related config](#step-3-edit-the-dataset-related-config) - [Train MAE on COCO Dataset](#train-mae-on-coco-dataset) In this tutorial, we provide some tips on how to conduct self-supervised learning on your own dataset(without the need of label). ## Train MAE on Custom Dataset In MMPretrain, We support the `CustomDataset` (similar to the `ImageFolder` in `torchvision`), which is able to read the images within the specified folder directly. You only need to prepare the path information of the custom dataset and edit the config. ### Step-1: Get the path of custom dataset It should be like `data/custom_dataset/` ### Step-2: Choose one config as template Here, we would like to use `configs/mae/mae_vit-base-p16_8xb512-amp-coslr-300e_in1k.py` as the example. We first copy this config file and rename it as `mae_vit-base-p16_8xb512-amp-coslr-300e_${custom_dataset}.py`. - `custom_dataset`: indicate which dataset you used, e.g.,`in1k` for ImageNet dataset, `coco` for COCO dataset The content of this config is: ```python _base_ = [ '../_base_/models/mae_vit-base-p16.py', '../_base_/datasets/imagenet_bs512_mae.py', '../_base_/default_runtime.py', ] # optimizer wrapper optim_wrapper = dict( type='AmpOptimWrapper', loss_scale='dynamic', optimizer=dict( type='AdamW', lr=1.5e-4 * 4096 / 256, betas=(0.9, 0.95), weight_decay=0.05), paramwise_cfg=dict( custom_keys={ 'ln': dict(decay_mult=0.0), 'bias': dict(decay_mult=0.0), 'pos_embed': dict(decay_mult=0.), 'mask_token': dict(decay_mult=0.), 'cls_token': dict(decay_mult=0.) })) # learning rate scheduler param_scheduler = [ dict( type='LinearLR', start_factor=0.0001, by_epoch=True, begin=0, end=40, convert_to_iter_based=True), dict( type='CosineAnnealingLR', T_max=260, by_epoch=True, begin=40, end=300, convert_to_iter_based=True) ] # runtime settings train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=300) default_hooks = dict( # only keeps the latest 3 checkpoints checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3)) randomness = dict(seed=0, diff_rank_seed=True) # auto resume resume = True # NOTE: `auto_scale_lr` is for automatically scaling LR # based on the actual training batch size. auto_scale_lr = dict(base_batch_size=4096) ``` ### Step-3: Edit the dataset related config The dataset related config is defined in `'../_base_/datasets/imagenet_bs512_mae.py'` in `_base_`. We then copy the content of dataset config file into our created file `mae_vit-base-p16_8xb512-coslr-400e_${custom_dataset}.py`. - Set the `dataset_type = 'CustomDataset'`, and the path of the custom dataset ` data_root = /dataset/my_custom_dataset`. - Remove the `ann_file` in `train_dataloader`, and edit the `data_prefix` if needed. And the edited config will be like this: ```python # >>>>>>>>>>>>>>>>>>>>> Start of Changed >>>>>>>>>>>>>>>>>>>>>>>>> _base_ = [ '../_base_/models/mae_vit-base-p16.py', '../_base_/datasets/imagenet_mae.py', '../_base_/default_runtime.py', ] # custom dataset dataset_type = 'CustomDataset' data_root = 'data/custom_dataset/' train_dataloader = dict( dataset=dict( type=dataset_type, data_root=data_root, # ann_file='meta/train.txt', # removed if you don't have the annotation file data_prefix=dict(img_path='./')) # <<<<<<<<<<<<<<<<<<<<<< End of Changed <<<<<<<<<<<<<<<<<<<<<<<<<<< # optimizer wrapper optim_wrapper = dict( type='AmpOptimWrapper', loss_scale='dynamic', optimizer=dict( type='AdamW', lr=1.5e-4 * 4096 / 256, betas=(0.9, 0.95), weight_decay=0.05), paramwise_cfg=dict( custom_keys={ 'ln': dict(decay_mult=0.0), 'bias': dict(decay_mult=0.0), 'pos_embed': dict(decay_mult=0.), 'mask_token': dict(decay_mult=0.), 'cls_token': dict(decay_mult=0.) })) # learning rate scheduler param_scheduler = [ dict( type='LinearLR', start_factor=0.0001, by_epoch=True, begin=0, end=40, convert_to_iter_based=True), dict( type='CosineAnnealingLR', T_max=260, by_epoch=True, begin=40, end=300, convert_to_iter_based=True) ] # runtime settings train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=300) default_hooks = dict( # only keeps the latest 3 checkpoints checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3)) randomness = dict(seed=0, diff_rank_seed=True) # auto resume resume = True # NOTE: `auto_scale_lr` is for automatically scaling LR # based on the actual training batch size. auto_scale_lr = dict(base_batch_size=4096) ``` By using the edited config file, you are able to train a self-supervised model with MAE algorithm on the custom dataset. ## Train MAE on COCO Dataset ```{note} You need to install MMDetection to use the `mmdet.CocoDataset` follow this [documentation](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/en/get_started.md) ``` Follow the aforementioned idea, we also present an example of how to train MAE on COCO dataset. The edited file will be like this: ```python # >>>>>>>>>>>>>>>>>>>>> Start of Changed >>>>>>>>>>>>>>>>>>>>>>>>> _base_ = [ '../_base_/models/mae_vit-base-p16.py', '../_base_/datasets/imagenet_mae.py', '../_base_/default_runtime.py', ] # custom dataset dataset_type = 'mmdet.CocoDataset' data_root = 'data/coco/' train_dataloader = dict( dataset=dict( type=dataset_type, data_root=data_root, ann_file='annotations/instances_train2017.json', data_prefix=dict(img='train2017/'))) # <<<<<<<<<<<<<<<<<<<<<< End of Changed <<<<<<<<<<<<<<<<<<<<<<<<<<< # optimizer wrapper optim_wrapper = dict( type='AmpOptimWrapper', loss_scale='dynamic', optimizer=dict( type='AdamW', lr=1.5e-4 * 4096 / 256, betas=(0.9, 0.95), weight_decay=0.05), paramwise_cfg=dict( custom_keys={ 'ln': dict(decay_mult=0.0), 'bias': dict(decay_mult=0.0), 'pos_embed': dict(decay_mult=0.), 'mask_token': dict(decay_mult=0.), 'cls_token': dict(decay_mult=0.) })) # learning rate scheduler param_scheduler = [ dict( type='LinearLR', start_factor=0.0001, by_epoch=True, begin=0, end=40, convert_to_iter_based=True), dict( type='CosineAnnealingLR', T_max=260, by_epoch=True, begin=40, end=300, convert_to_iter_based=True) ] # runtime settings train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=300) default_hooks = dict( # only keeps the latest 3 checkpoints checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3)) randomness = dict(seed=0, diff_rank_seed=True) # auto resume resume = True # NOTE: `auto_scale_lr` is for automatically scaling LR # based on the actual training batch size. auto_scale_lr = dict(base_batch_size=4096) ```