_base_ = [ '../../_base_/models/swin_transformer/base_224.py', '../../_base_/datasets/imagenet_bs256_swin_192.py', '../../_base_/default_runtime.py' ] # model settings model = dict( backbone=dict( img_size=192, drop_path_rate=0.1, stage_cfgs=dict(block_cfgs=dict(window_size=6)))) # optimizer settings optim_wrapper = dict( type='AmpOptimWrapper', optimizer=dict(type='AdamW', lr=5e-3), clip_grad=dict(max_norm=5.0), constructor='LearningRateDecayOptimWrapperConstructor', paramwise_cfg=dict( layer_decay_rate=0.9, custom_keys={ '.norm': dict(decay_mult=0.0), '.bias': dict(decay_mult=0.0), '.absolute_pos_embed': dict(decay_mult=0.0), '.relative_position_bias_table': dict(decay_mult=0.0) })) # learning rate scheduler param_scheduler = [ dict( type='LinearLR', start_factor=2.5e-7 / 1.25e-3, by_epoch=True, begin=0, end=20, convert_to_iter_based=True), dict( type='CosineAnnealingLR', T_max=80, eta_min=2.5e-7 * 2048 / 512, by_epoch=True, begin=20, end=100, convert_to_iter_based=True) ] # runtime settings train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=100) val_cfg = dict() test_cfg = dict() default_hooks = dict( # save checkpoint per epoch. checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=3), logger=dict(type='LoggerHook', interval=100)) randomness = dict(seed=0)