import logging from abc import ABCMeta, abstractmethod import torch.nn as nn from mmcv.runner import load_checkpoint class BaseBackbone(nn.Module, metaclass=ABCMeta): """Base backbone. This class defines the basic functions of a backbone. Any backbone that inherits this class should at least define its own `forward` function. """ def __init__(self): super(BaseBackbone, self).__init__() def init_weights(self, pretrained=None): """Init backbone weights Args: pretrained (str | None): If pretrained is a string, then it initializes backbone weights by loading the pretrained checkpoint. If pretrained is None, then it follows default initializer or customized initializer in subclasses. """ if isinstance(pretrained, str): logger = logging.getLogger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: # use default initializer or customized initializer in subclasses pass else: raise TypeError('pretrained must be a str or None.' f' But received {type(pretrained)}.') @abstractmethod def forward(self, x): """Forward computation Args: x (tensor | tuple[tensor]): x could be a Torch.tensor or a tuple of Torch.tensor, containing input data for forward computation. """ pass def train(self, mode=True): """Set module status before forward computation Args: mode (bool): Whether it is train_mode or test_mode """ super(BaseBackbone, self).train(mode)