_base_ = [ '../_base_/datasets/imagenet_bs128_poolformer_small_224.py', '../_base_/schedules/imagenet_bs1024_adamw_swin.py', '../_base_/default_runtime.py', ] model = dict( type='ImageClassifier', backbone=dict( type='EfficientFormer', arch='l7', drop_path_rate=0, init_cfg=[ dict( type='TruncNormal', layer=['Conv2d', 'Linear'], std=.02, bias=0.), dict(type='Constant', layer=['GroupNorm'], val=1., bias=0.), dict(type='Constant', layer=['LayerScale'], val=1e-5) ]), neck=dict(type='GlobalAveragePooling', dim=1), head=dict( type='EfficientFormerClsHead', in_channels=768, num_classes=1000))