import os.path as osp import subprocess import sys from collections import defaultdict import cv2 import mmcv import torch import torchvision import mmcls def collect_env(): env_info = {} env_info['sys.platform'] = sys.platform env_info['Python'] = sys.version.replace('\n', '') cuda_available = torch.cuda.is_available() env_info['CUDA available'] = cuda_available if cuda_available: from torch.utils.cpp_extension import CUDA_HOME env_info['CUDA_HOME'] = CUDA_HOME if CUDA_HOME is not None and osp.isdir(CUDA_HOME): try: nvcc = osp.join(CUDA_HOME, 'bin/nvcc') nvcc = subprocess.check_output( f'"{nvcc}" -V | tail -n1', shell=True) nvcc = nvcc.decode('utf-8').strip() except subprocess.SubprocessError: nvcc = 'Not Available' env_info['NVCC'] = nvcc devices = defaultdict(list) for k in range(torch.cuda.device_count()): devices[torch.cuda.get_device_name(k)].append(str(k)) for name, devids in devices.items(): env_info['GPU ' + ','.join(devids)] = name gcc = subprocess.check_output('gcc --version | head -n1', shell=True) gcc = gcc.decode('utf-8').strip() env_info['GCC'] = gcc env_info['PyTorch'] = torch.__version__ env_info['PyTorch compiling details'] = torch.__config__.show() env_info['TorchVision'] = torchvision.__version__ env_info['OpenCV'] = cv2.__version__ env_info['MMCV'] = mmcv.__version__ env_info['mmcls'] = mmcls.__version__ return env_info if __name__ == '__main__': for name, val in collect_env().items(): print(f'{name}: {val}')