# Copyright (c) OpenMMLab. All rights reserved. from pathlib import Path from typing import Callable, List, Optional, Union import numpy as np import torch from mmcv.image import imread from mmengine.config import Config from mmengine.dataset import BaseDataset, Compose, default_collate from mmengine.device import get_device from mmengine.infer import BaseInferencer from mmengine.model import BaseModel from mmengine.runner import load_checkpoint from mmpretrain.registry import TRANSFORMS from mmpretrain.structures import DataSample from .model import get_model, list_models ModelType = Union[BaseModel, str, Config] InputType = Union[str, np.ndarray, list] class ImageRetrievalInferencer(BaseInferencer): """The inferencer for image to image retrieval. Args: model (BaseModel | str | Config): A model name or a path to the confi file, or a :obj:`BaseModel` object. The model name can be found by ``ImageClassificationInferencer.list_models()`` and you can also query it in :doc:`/modelzoo_statistics`. weights (str, optional): Path to the checkpoint. If None, it will try to find a pre-defined weight from the model you specified (only work if the ``model`` is a model name). Defaults to None. device (str, optional): Device to run inference. If None, use CPU or the device of the input model. Defaults to None. Example: 1. Use a pre-trained model in MMPreTrain to inference an image. >>> from mmpretrain import ImageClassificationInferencer >>> inferencer = ImageClassificationInferencer('resnet50_8xb32_in1k') >>> inferencer('demo/demo.JPEG') [{'pred_score': array([...]), 'pred_label': 65, 'pred_score': 0.6649367809295654, 'pred_class': 'sea snake'}] 2. Use a config file and checkpoint to inference multiple images on GPU, and save the visualization results in a folder. >>> from mmpretrain import ImageClassificationInferencer >>> inferencer = ImageClassificationInferencer( model='configs/resnet/resnet50_8xb32_in1k.py', weights='https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb32_in1k_20210831-ea4938fc.pth', device='cuda') >>> inferencer(['demo/dog.jpg', 'demo/bird.JPEG'], show_dir="./visualize/") """ # noqa: E501 visualize_kwargs: set = { 'draw_score', 'resize', 'show_dir', 'show', 'wait_time' } postprocess_kwargs: set = {'topk'} def __init__( self, model: ModelType, prototype, prototype_vecs=None, prepare_batch_size=8, pretrained: Union[bool, str] = True, device: Union[str, torch.device, None] = None, ) -> None: device = device or get_device() if isinstance(model, BaseModel): if isinstance(pretrained, str): load_checkpoint(model, pretrained, map_location='cpu') model = model.to(device) else: model = get_model(model, pretrained, device) model.eval() self.config = model.config self.model = model self.pipeline = self._init_pipeline(self.config) self.collate_fn = default_collate self.visualizer = None self.prototype_dataset = self._prepare_prototype( prototype, prototype_vecs, prepare_batch_size) # An ugly hack to escape from the duplicated arguments check in the # base class self.visualize_kwargs.add('topk') def _prepare_prototype(self, prototype, prototype_vecs=None, batch_size=8): from mmengine.dataset import DefaultSampler from torch.utils.data import DataLoader def build_dataloader(dataset): return DataLoader( dataset, batch_size=batch_size, collate_fn=self.collate_fn, sampler=DefaultSampler(dataset, shuffle=False), persistent_workers=False, ) test_pipeline = self.config.test_dataloader.dataset.pipeline if isinstance(prototype, str): # A directory path of images from mmpretrain.datasets import CustomDataset dataset = CustomDataset( data_root=prototype, pipeline=test_pipeline, with_label=False) dataloader = build_dataloader(dataset) elif isinstance(prototype, dict): # A config of dataset from mmpretrain.registry import DATASETS prototype.setdefault('pipeline', test_pipeline) dataset = DATASETS.build(prototype) dataloader = build_dataloader(dataset) elif isinstance(prototype, DataLoader): dataset = prototype.dataset dataloader = prototype elif isinstance(prototype, BaseDataset): dataset = prototype dataloader = build_dataloader(dataset) else: raise TypeError(f'Unsupported prototype type {type(prototype)}.') if prototype_vecs is not None and Path(prototype_vecs).exists(): self.model.prototype = prototype_vecs else: self.model.prototype = dataloader self.model.prepare_prototype() from mmengine.logging import MMLogger logger = MMLogger.get_current_instance() if prototype_vecs is None: logger.info('The prototype has been prepared, you can use ' '`save_prototype_vecs` to dump it into a pickle ' 'file for the future usage.') elif not Path(prototype_vecs).exists(): self.save_prototype_vecs(prototype_vecs) logger.info(f'The prototype has been saved at {prototype_vecs}.') return dataset def save_prototype_vecs(self, path): self.model.dump_prototype(path) def __call__(self, inputs: InputType, return_datasamples: bool = False, batch_size: int = 1, **kwargs) -> dict: """Call the inferencer. Args: inputs (str | array | list): The image path or array, or a list of images. return_datasamples (bool): Whether to return results as :obj:`DataSample`. Defaults to False. batch_size (int): Batch size. Defaults to 1. resize (int, optional): Resize the long edge of the image to the specified length before visualization. Defaults to None. draw_score (bool): Whether to draw the match scores. Defaults to True. show (bool): Whether to display the visualization result in a window. Defaults to False. wait_time (float): The display time (s). Defaults to 0, which means "forever". show_dir (str, optional): If not None, save the visualization results in the specified directory. Defaults to None. Returns: list: The inference results. """ return super().__call__(inputs, return_datasamples, batch_size, **kwargs) def _init_pipeline(self, cfg: Config) -> Callable: test_pipeline_cfg = cfg.test_dataloader.dataset.pipeline if test_pipeline_cfg[0]['type'] == 'LoadImageFromFile': # Image loading is finished in `self.preprocess`. test_pipeline_cfg = test_pipeline_cfg[1:] test_pipeline = Compose( [TRANSFORMS.build(t) for t in test_pipeline_cfg]) return test_pipeline def preprocess(self, inputs: List[InputType], batch_size: int = 1): def load_image(input_): img = imread(input_) if img is None: raise ValueError(f'Failed to read image {input_}.') return dict( img=img, img_shape=img.shape[:2], ori_shape=img.shape[:2], ) pipeline = Compose([load_image, self.pipeline]) chunked_data = self._get_chunk_data(map(pipeline, inputs), batch_size) yield from map(self.collate_fn, chunked_data) def visualize(self, ori_inputs: List[InputType], preds: List[DataSample], topk: int = 3, resize: Optional[int] = 224, show: bool = False, wait_time: int = 0, draw_score=True, show_dir=None): if not show and show_dir is None: return None if self.visualizer is None: from mmpretrain.visualization import UniversalVisualizer self.visualizer = UniversalVisualizer() visualization = [] for i, (input_, data_sample) in enumerate(zip(ori_inputs, preds)): image = imread(input_) if isinstance(input_, str): # The image loaded from path is BGR format. image = image[..., ::-1] name = Path(input_).stem else: name = str(i) if show_dir is not None: show_dir = Path(show_dir) show_dir.mkdir(exist_ok=True) out_file = str((show_dir / name).with_suffix('.png')) else: out_file = None self.visualizer.visualize_image_retrieval( image, data_sample, self.prototype_dataset, topk=topk, resize=resize, draw_score=draw_score, show=show, wait_time=wait_time, name=name, out_file=out_file) visualization.append(self.visualizer.get_image()) if show: self.visualizer.close() return visualization def postprocess( self, preds: List[DataSample], visualization: List[np.ndarray], return_datasamples=False, topk=1, ) -> dict: if return_datasamples: return preds results = [] for data_sample in preds: match_scores, indices = torch.topk(data_sample.pred_score, k=topk) matches = [] for match_score, sample_idx in zip(match_scores, indices): sample = self.prototype_dataset.get_data_info( sample_idx.item()) sample_idx = sample.pop('sample_idx') matches.append({ 'match_score': match_score, 'sample_idx': sample_idx, 'sample': sample }) results.append(matches) return results @staticmethod def list_models(pattern: Optional[str] = None): """List all available model names. Args: pattern (str | None): A wildcard pattern to match model names. Returns: List[str]: a list of model names. """ return list_models(pattern=pattern, task='Image Retrieval') def _dispatch_kwargs(self, **kwargs): """Dispatch kwargs to preprocess(), forward(), visualize() and postprocess() according to the actual demands. Override this method to allow same argument for different methods. Returns: Tuple[Dict, Dict, Dict, Dict]: kwargs passed to preprocess, forward, visualize and postprocess respectively. """ method_kwargs = set.union( self.preprocess_kwargs, self.forward_kwargs, self.visualize_kwargs, self.postprocess_kwargs, ) union_kwargs = method_kwargs | set(kwargs.keys()) if union_kwargs != method_kwargs: unknown_kwargs = union_kwargs - method_kwargs raise ValueError( f'unknown argument {unknown_kwargs} for `preprocess`, ' '`forward`, `visualize` and `postprocess`') preprocess_kwargs = {} forward_kwargs = {} visualize_kwargs = {} postprocess_kwargs = {} for key, value in kwargs.items(): if key in self.preprocess_kwargs: preprocess_kwargs[key] = value if key in self.forward_kwargs: forward_kwargs[key] = value if key in self.visualize_kwargs: visualize_kwargs[key] = value if key in self.postprocess_kwargs: postprocess_kwargs[key] = value return ( preprocess_kwargs, forward_kwargs, visualize_kwargs, postprocess_kwargs, )