# dataset settings dataset_type = 'ImageNet' # file_client_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/classification/', # 'data/': 's3://openmmlab/datasets/classification/' # })) file_client_args = dict(backend='disk') train_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='RandomResizedCrop', size=224), dict(type='RandomFlip', prob=0.5, direction='horizontal'), dict(type='PackClsInputs') ] test_pipeline = [ dict(type='LoadImageFromFile', file_client_args=file_client_args), dict(type='Resize', scale=(256, -1), keep_ratio=True), dict(type='CenterCrop', crop_size=224), dict(type='PackClsInputs') ] train_dataloader = dict( batch_size=32, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type=dataset_type, data_prefix='data/imagenet/val', ann_file='data/imagenet/meta/val.txt', pipeline=train_pipeline)) val_dataloader = dict( batch_size=32, num_workers=2, persistent_workers=True, dataset=dict( type=dataset_type, data_prefix='data/imagenet/val', ann_file='data/imagenet/meta/val.txt', pipeline=test_pipeline)) test_dataloader = val_dataloader evaluation = dict(interval=1, metric='accuracy')