# Copyright (c) OpenMMLab. All rights reserved. import os import os.path as osp import pickle import tempfile from unittest import TestCase from unittest.mock import MagicMock, patch import numpy as np from mmengine.registry import TRANSFORMS from mmcls.datasets import DATASETS from mmcls.utils import get_root_logger # import torch mmcls_logger = get_root_logger() ASSETS_ROOT = osp.abspath( osp.join(osp.dirname(__file__), '../../data/dataset')) class TestBaseDataset(TestCase): DATASET_TYPE = 'BaseDataset' DEFAULT_ARGS = dict(data_root=ASSETS_ROOT, ann_file='ann.json') def test_initialize(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test loading metainfo from ann_file cfg = {**self.DEFAULT_ARGS, 'metainfo': None, 'classes': None} dataset = dataset_class(**cfg) self.assertEqual( dataset.CLASSES, dataset_class.METAINFO.get('classes', ('first', 'second'))) self.assertFalse(dataset.test_mode) # Test overriding metainfo by `metainfo` argument cfg = {**self.DEFAULT_ARGS, 'metainfo': {'classes': ('bus', 'car')}} dataset = dataset_class(**cfg) self.assertEqual(dataset.CLASSES, ('bus', 'car')) # Test overriding metainfo by `classes` argument cfg = {**self.DEFAULT_ARGS, 'classes': ['bus', 'car']} dataset = dataset_class(**cfg) self.assertEqual(dataset.CLASSES, ('bus', 'car')) classes_file = osp.join(ASSETS_ROOT, 'classes.txt') cfg = {**self.DEFAULT_ARGS, 'classes': classes_file} dataset = dataset_class(**cfg) self.assertEqual(dataset.CLASSES, ('bus', 'car')) self.assertEqual(dataset.class_to_idx, {'bus': 0, 'car': 1}) # Test invalid classes cfg = {**self.DEFAULT_ARGS, 'classes': dict(classes=1)} with self.assertRaisesRegex(ValueError, "type "): dataset_class(**cfg) def test_get_cat_ids(self): dataset_class = DATASETS.get(self.DATASET_TYPE) dataset = dataset_class(**self.DEFAULT_ARGS) cat_ids = dataset.get_cat_ids(0) self.assertIsInstance(cat_ids, list) self.assertEqual(len(cat_ids), 1) self.assertIsInstance(cat_ids[0], int) def test_repr(self): dataset_class = DATASETS.get(self.DATASET_TYPE) cfg = {**self.DEFAULT_ARGS, 'lazy_init': True} dataset = dataset_class(**cfg) head = 'Dataset ' + dataset.__class__.__name__ self.assertIn(head, repr(dataset)) if dataset.CLASSES is not None: num_classes = len(dataset.CLASSES) self.assertIn(f'Number of categories: \t{num_classes}', repr(dataset)) else: self.assertIn('The `CLASSES` meta info is not set.', repr(dataset)) self.assertIn("Haven't been initialized", repr(dataset)) dataset.full_init() self.assertIn(f'Number of samples: \t{len(dataset)}', repr(dataset)) TRANSFORMS.register_module(name='test_mock', module=MagicMock) cfg = {**self.DEFAULT_ARGS, 'pipeline': [dict(type='test_mock')]} dataset = dataset_class(**cfg) self.assertIn('With transforms', repr(dataset)) del TRANSFORMS.module_dict['test_mock'] def test_extra_repr(self): dataset_class = DATASETS.get(self.DATASET_TYPE) cfg = {**self.DEFAULT_ARGS, 'lazy_init': True} dataset = dataset_class(**cfg) self.assertIn(f'Annotation file: \t{dataset.ann_file}', repr(dataset)) self.assertIn(f'Prefix of images: \t{dataset.img_prefix}', repr(dataset)) """Temporarily disabled. class TestMultiLabelDataset(TestBaseDataset): DATASET_TYPE = 'MultiLabelDataset' def test_get_cat_ids(self): dataset_class = DATASETS.get(self.DATASET_TYPE) fake_ann = [ dict( img_prefix='', img_info=dict(), gt_label=np.array([0, 1, 1, 0], dtype=np.uint8)) ] with patch.object(dataset_class, 'load_annotations') as mock_load: mock_load.return_value = fake_ann dataset = dataset_class(**self.DEFAULT_ARGS) cat_ids = dataset.get_cat_ids(0) self.assertIsInstance(cat_ids, list) self.assertEqual(len(cat_ids), 2) self.assertIsInstance(cat_ids[0], int) self.assertEqual(cat_ids, [1, 2]) def test_evaluate(self): dataset_class = DATASETS.get(self.DATASET_TYPE) fake_ann = [ dict(gt_label=np.array([1, 1, 0, -1], dtype=np.int8)), dict(gt_label=np.array([1, 1, 0, -1], dtype=np.int8)), dict(gt_label=np.array([0, -1, 1, -1], dtype=np.int8)), dict(gt_label=np.array([0, 1, 0, -1], dtype=np.int8)), dict(gt_label=np.array([0, 1, 0, -1], dtype=np.int8)), ] with patch.object(dataset_class, 'load_annotations') as mock_load: mock_load.return_value = fake_ann dataset = dataset_class(**self.DEFAULT_ARGS) fake_results = np.array([ [0.9, 0.8, 0.3, 0.2], [0.1, 0.2, 0.2, 0.1], [0.7, 0.5, 0.9, 0.3], [0.8, 0.1, 0.1, 0.2], [0.8, 0.1, 0.1, 0.2], ]) # the metric must be valid for the dataset with self.assertRaisesRegex(ValueError, "{'unknown'} is not supported"): dataset.evaluate(fake_results, metric='unknown') # only one metric eval_results = dataset.evaluate(fake_results, metric='mAP') self.assertEqual(eval_results.keys(), {'mAP'}) self.assertAlmostEqual(eval_results['mAP'], 67.5, places=4) # multiple metrics eval_results = dataset.evaluate( fake_results, metric=['mAP', 'CR', 'OF1']) self.assertEqual(eval_results.keys(), {'mAP', 'CR', 'OF1'}) self.assertAlmostEqual(eval_results['mAP'], 67.50, places=2) self.assertAlmostEqual(eval_results['CR'], 43.75, places=2) self.assertAlmostEqual(eval_results['OF1'], 42.86, places=2) """ class TestCustomDataset(TestBaseDataset): DATASET_TYPE = 'CustomDataset' DEFAULT_ARGS = dict(data_root=ASSETS_ROOT, ann_file='ann.txt') def test_initialize(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test overriding metainfo by `metainfo` argument cfg = {**self.DEFAULT_ARGS, 'metainfo': {'classes': ('bus', 'car')}} dataset = dataset_class(**cfg) self.assertEqual(dataset.CLASSES, ('bus', 'car')) # Test overriding metainfo by `classes` argument cfg = {**self.DEFAULT_ARGS, 'classes': ['bus', 'car']} dataset = dataset_class(**cfg) self.assertEqual(dataset.CLASSES, ('bus', 'car')) classes_file = osp.join(ASSETS_ROOT, 'classes.txt') cfg = {**self.DEFAULT_ARGS, 'classes': classes_file} dataset = dataset_class(**cfg) self.assertEqual(dataset.CLASSES, ('bus', 'car')) self.assertEqual(dataset.class_to_idx, {'bus': 0, 'car': 1}) # Test invalid classes cfg = {**self.DEFAULT_ARGS, 'classes': dict(classes=1)} with self.assertRaisesRegex(ValueError, "type "): dataset_class(**cfg) def test_load_data_list(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # test load without ann_file cfg = { **self.DEFAULT_ARGS, 'data_prefix': ASSETS_ROOT, 'ann_file': None, } dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 3) self.assertEqual(dataset.CLASSES, ('a', 'b')) # auto infer classes self.assertGreaterEqual( dataset.get_data_info(0).items(), { 'img_path': osp.join(ASSETS_ROOT, 'a/1.JPG'), 'gt_label': 0 }.items()) self.assertGreaterEqual( dataset.get_data_info(2).items(), { 'img_path': osp.join(ASSETS_ROOT, 'b/subb/3.jpg'), 'gt_label': 1 }.items()) # test ann_file assertion cfg = { **self.DEFAULT_ARGS, 'data_prefix': ASSETS_ROOT, 'ann_file': ['ann_file.txt'], } with self.assertRaisesRegex(TypeError, 'expected str'): dataset_class(**cfg) # test load with ann_file cfg = { **self.DEFAULT_ARGS, 'data_root': ASSETS_ROOT, 'ann_file': 'ann.txt', } dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 3) # custom dataset won't infer CLASSES from ann_file self.assertIsNone(dataset.CLASSES, None) self.assertGreaterEqual( dataset.get_data_info(0).items(), { 'img_path': osp.join(ASSETS_ROOT, 'a/1.JPG'), 'gt_label': 0, }.items()) self.assertGreaterEqual( dataset.get_data_info(2).items(), { 'img_path': osp.join(ASSETS_ROOT, 'b/subb/3.jpg'), 'gt_label': 1 }.items()) np.testing.assert_equal(dataset.get_gt_labels(), np.array([0, 1, 1])) # test load with absolute ann_file cfg = { **self.DEFAULT_ARGS, 'data_root': None, 'data_prefix': None, 'ann_file': osp.join(ASSETS_ROOT, 'ann.txt'), } dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 3) # custom dataset won't infer CLASSES from ann_file self.assertIsNone(dataset.CLASSES, None) self.assertGreaterEqual( dataset.get_data_info(0).items(), { 'img_path': 'a/1.JPG', 'gt_label': 0, }.items()) self.assertGreaterEqual( dataset.get_data_info(2).items(), { 'img_path': 'b/subb/3.jpg', 'gt_label': 1 }.items()) # test extensions filter cfg = { **self.DEFAULT_ARGS, 'data_prefix': dict(img_path=ASSETS_ROOT), 'ann_file': None, 'extensions': ('.txt', ) } with self.assertRaisesRegex(RuntimeError, 'Supported extensions are: .txt'): dataset_class(**cfg) cfg = { **self.DEFAULT_ARGS, 'data_prefix': ASSETS_ROOT, 'ann_file': None, 'extensions': ('.jpeg', ) } with self.assertLogs(mmcls_logger, 'WARN') as log: dataset = dataset_class(**cfg) self.assertIn('Supported extensions are: .jpeg', log.output[0]) self.assertEqual(len(dataset), 1) self.assertGreaterEqual( dataset.get_data_info(0).items(), { 'img_path': osp.join(ASSETS_ROOT, 'b/2.jpeg'), 'gt_label': 1 }.items()) # test classes check cfg = { **self.DEFAULT_ARGS, 'data_prefix': ASSETS_ROOT, 'classes': ('apple', 'banana'), 'ann_file': None, } dataset = dataset_class(**cfg) self.assertEqual(dataset.CLASSES, ('apple', 'banana')) cfg['classes'] = ['apple', 'banana', 'dog'] with self.assertRaisesRegex(AssertionError, r"\(2\) doesn't match .* classes \(3\)"): dataset_class(**cfg) class TestImageNet(TestCustomDataset): DATASET_TYPE = 'ImageNet' DEFAULT_ARGS = dict(data_root=ASSETS_ROOT, ann_file='ann.txt') def test_load_data_list(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # test classes number cfg = { **self.DEFAULT_ARGS, 'data_prefix': ASSETS_ROOT, 'ann_file': None, } with self.assertRaisesRegex( AssertionError, r"\(2\) doesn't match .* classes \(1000\)"): dataset_class(**cfg) # test override classes cfg = { **self.DEFAULT_ARGS, 'data_prefix': ASSETS_ROOT, 'classes': ['cat', 'dog'], 'ann_file': None, } dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 3) self.assertEqual(dataset.CLASSES, ('cat', 'dog')) class TestImageNet21k(TestCustomDataset): DATASET_TYPE = 'ImageNet21k' DEFAULT_ARGS = dict( data_root=ASSETS_ROOT, classes=['cat', 'dog'], ann_file='ann.txt') def test_load_data_list(self): super().test_initialize() dataset_class = DATASETS.get(self.DATASET_TYPE) # The multi_label option is not implemented not. cfg = {**self.DEFAULT_ARGS, 'multi_label': True} with self.assertRaisesRegex(NotImplementedError, 'not supported'): dataset_class(**cfg) # Warn about ann_file cfg = {**self.DEFAULT_ARGS, 'ann_file': None} with self.assertLogs(mmcls_logger, 'WARN') as log: dataset_class(**cfg) self.assertIn('specify the `ann_file`', log.output[0]) # Warn about classes cfg = {**self.DEFAULT_ARGS, 'classes': None} with self.assertLogs(mmcls_logger, 'WARN') as log: dataset_class(**cfg) self.assertIn('specify the `classes`', log.output[0]) class TestCIFAR10(TestBaseDataset): DATASET_TYPE = 'CIFAR10' @classmethod def setUpClass(cls) -> None: super().setUpClass() tmpdir = tempfile.TemporaryDirectory() cls.tmpdir = tmpdir data_prefix = tmpdir.name cls.DEFAULT_ARGS = dict( data_prefix=data_prefix, pipeline=[], test_mode=False) dataset_class = DATASETS.get(cls.DATASET_TYPE) base_folder = osp.join(data_prefix, dataset_class.base_folder) os.mkdir(base_folder) cls.fake_imgs = np.random.randint( 0, 255, size=(6, 3 * 32 * 32), dtype=np.uint8) cls.fake_labels = np.random.randint(0, 10, size=(6, )) cls.fake_classes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] batch1 = dict( data=cls.fake_imgs[:2], labels=cls.fake_labels[:2].tolist()) with open(osp.join(base_folder, 'data_batch_1'), 'wb') as f: f.write(pickle.dumps(batch1)) batch2 = dict( data=cls.fake_imgs[2:4], labels=cls.fake_labels[2:4].tolist()) with open(osp.join(base_folder, 'data_batch_2'), 'wb') as f: f.write(pickle.dumps(batch2)) test_batch = dict( data=cls.fake_imgs[4:], fine_labels=cls.fake_labels[4:].tolist()) with open(osp.join(base_folder, 'test_batch'), 'wb') as f: f.write(pickle.dumps(test_batch)) meta = {dataset_class.meta['key']: cls.fake_classes} meta_filename = dataset_class.meta['filename'] with open(osp.join(base_folder, meta_filename), 'wb') as f: f.write(pickle.dumps(meta)) dataset_class.train_list = [['data_batch_1', None], ['data_batch_2', None]] dataset_class.test_list = [['test_batch', None]] dataset_class.meta['md5'] = None def test_initialize(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test overriding metainfo by `metainfo` argument cfg = {**self.DEFAULT_ARGS, 'metainfo': {'classes': ('bus', 'car')}} dataset = dataset_class(**cfg) self.assertEqual(dataset.CLASSES, ('bus', 'car')) # Test overriding metainfo by `classes` argument cfg = {**self.DEFAULT_ARGS, 'classes': ['bus', 'car']} dataset = dataset_class(**cfg) self.assertEqual(dataset.CLASSES, ('bus', 'car')) classes_file = osp.join(ASSETS_ROOT, 'classes.txt') cfg = {**self.DEFAULT_ARGS, 'classes': classes_file} dataset = dataset_class(**cfg) self.assertEqual(dataset.CLASSES, ('bus', 'car')) self.assertEqual(dataset.class_to_idx, {'bus': 0, 'car': 1}) # Test invalid classes cfg = {**self.DEFAULT_ARGS, 'classes': dict(classes=1)} with self.assertRaisesRegex(ValueError, "type "): dataset_class(**cfg) def test_load_data_list(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test default behavior dataset = dataset_class(**self.DEFAULT_ARGS) self.assertEqual(len(dataset), 4) self.assertEqual(dataset.CLASSES, dataset_class.METAINFO['classes']) data_info = dataset[0] fake_img = self.fake_imgs[0].reshape(3, 32, 32).transpose(1, 2, 0) np.testing.assert_equal(data_info['img'], fake_img) np.testing.assert_equal(data_info['gt_label'], self.fake_labels[0]) # Test with test_mode=True cfg = {**self.DEFAULT_ARGS, 'test_mode': True} dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 2) data_info = dataset[0] fake_img = self.fake_imgs[4].reshape(3, 32, 32).transpose(1, 2, 0) np.testing.assert_equal(data_info['img'], fake_img) np.testing.assert_equal(data_info['gt_label'], self.fake_labels[4]) # Test load meta cfg = {**self.DEFAULT_ARGS, 'lazy_init': True} dataset = dataset_class(**cfg) dataset._metainfo = {} dataset.full_init() self.assertEqual(dataset.CLASSES, self.fake_classes) cfg = {**self.DEFAULT_ARGS, 'lazy_init': True} dataset = dataset_class(**cfg) dataset._metainfo = {} dataset.meta['filename'] = 'invalid' with self.assertRaisesRegex(RuntimeError, 'not found or corrupted'): dataset.full_init() # Test automatically download with patch( 'mmcls.datasets.cifar.download_and_extract_archive') as mock: cfg = {**self.DEFAULT_ARGS, 'lazy_init': True, 'test_mode': True} dataset = dataset_class(**cfg) dataset.test_list = [['invalid_batch', None]] with self.assertRaisesRegex(AssertionError, 'Download failed'): dataset.full_init() mock.assert_called_once_with( dataset.url, dataset.data_prefix['root'], filename=dataset.filename, md5=dataset.tgz_md5) with self.assertRaisesRegex(RuntimeError, '`download=True`'): cfg = { **self.DEFAULT_ARGS, 'lazy_init': True, 'test_mode': True, 'download': False } dataset = dataset_class(**cfg) dataset.test_list = [['test_batch', 'invalid_md5']] dataset.full_init() # Test different backend cfg = { **self.DEFAULT_ARGS, 'lazy_init': True, 'data_prefix': 'http://openmmlab/cifar' } dataset = dataset_class(**cfg) dataset._check_integrity = MagicMock(return_value=False) with self.assertRaisesRegex(RuntimeError, 'http://openmmlab/cifar'): dataset.full_init() def test_extra_repr(self): dataset_class = DATASETS.get(self.DATASET_TYPE) cfg = {**self.DEFAULT_ARGS, 'lazy_init': True} dataset = dataset_class(**cfg) self.assertIn(f'Prefix of data: \t{dataset.data_prefix["root"]}', repr(dataset)) @classmethod def tearDownClass(cls): cls.tmpdir.cleanup() class TestCIFAR100(TestCIFAR10): DATASET_TYPE = 'CIFAR100' """Temporarily disabled. class TestMNIST(TestBaseDataset): DATASET_TYPE = 'MNIST' @classmethod def setUpClass(cls) -> None: super().setUpClass() tmpdir = tempfile.TemporaryDirectory() cls.tmpdir = tmpdir data_prefix = tmpdir.name cls.DEFAULT_ARGS = dict(data_prefix=data_prefix, pipeline=[]) dataset_class = DATASETS.get(cls.DATASET_TYPE) def rm_suffix(s): return s[:s.rfind('.')] train_image_file = osp.join( data_prefix, rm_suffix(dataset_class.resources['train_image_file'][0])) train_label_file = osp.join( data_prefix, rm_suffix(dataset_class.resources['train_label_file'][0])) test_image_file = osp.join( data_prefix, rm_suffix(dataset_class.resources['test_image_file'][0])) test_label_file = osp.join( data_prefix, rm_suffix(dataset_class.resources['test_label_file'][0])) cls.fake_img = np.random.randint(0, 255, size=(28, 28), dtype=np.uint8) cls.fake_label = np.random.randint(0, 10, size=(1, ), dtype=np.uint8) for file in [train_image_file, test_image_file]: magic = b'\x00\x00\x08\x03' # num_dims = 3, type = uint8 head = b'\x00\x00\x00\x01' + b'\x00\x00\x00\x1c' * 2 # (1, 28, 28) data = magic + head + cls.fake_img.flatten().tobytes() with open(file, 'wb') as f: f.write(data) for file in [train_label_file, test_label_file]: magic = b'\x00\x00\x08\x01' # num_dims = 3, type = uint8 head = b'\x00\x00\x00\x01' # (1, ) data = magic + head + cls.fake_label.tobytes() with open(file, 'wb') as f: f.write(data) def test_load_annotations(self): dataset_class = DATASETS.get(self.DATASET_TYPE) with patch.object(dataset_class, 'download'): # Test default behavior dataset = dataset_class(**self.DEFAULT_ARGS) self.assertEqual(len(dataset), 1) data_info = dataset[0] np.testing.assert_equal(data_info['img'], self.fake_img) np.testing.assert_equal(data_info['gt_label'], self.fake_label) @classmethod def tearDownClass(cls): cls.tmpdir.cleanup() class TestVOC(TestMultiLabelDataset): DATASET_TYPE = 'VOC' DEFAULT_ARGS = dict(data_prefix='VOC2007', pipeline=[]) class TestCUB(TestBaseDataset): DATASET_TYPE = 'CUB' @classmethod def setUpClass(cls) -> None: super().setUpClass() tmpdir = tempfile.TemporaryDirectory() cls.tmpdir = tmpdir cls.data_prefix = tmpdir.name cls.ann_file = osp.join(cls.data_prefix, 'ann_file.txt') cls.image_class_labels_file = osp.join(cls.data_prefix, 'classes.txt') cls.train_test_split_file = osp.join(cls.data_prefix, 'split.txt') cls.train_test_split_file2 = osp.join(cls.data_prefix, 'split2.txt') cls.DEFAULT_ARGS = dict( data_prefix=cls.data_prefix, pipeline=[], ann_file=cls.ann_file, image_class_labels_file=cls.image_class_labels_file, train_test_split_file=cls.train_test_split_file) with open(cls.ann_file, 'w') as f: f.write('\n'.join([ '1 1.txt', '2 2.txt', '3 3.txt', ])) with open(cls.image_class_labels_file, 'w') as f: f.write('\n'.join([ '1 2', '2 3', '3 1', ])) with open(cls.train_test_split_file, 'w') as f: f.write('\n'.join([ '1 0', '2 1', '3 1', ])) with open(cls.train_test_split_file2, 'w') as f: f.write('\n'.join([ '1 0', '2 1', ])) def test_load_annotations(self): dataset_class = DATASETS.get(self.DATASET_TYPE) # Test default behavior dataset = dataset_class(**self.DEFAULT_ARGS) self.assertEqual(len(dataset), 2) self.assertEqual(dataset.CLASSES, dataset_class.CLASSES) data_info = dataset[0] np.testing.assert_equal(data_info['img_prefix'], self.data_prefix) np.testing.assert_equal(data_info['img_info'], {'filename': '2.txt'}) np.testing.assert_equal(data_info['gt_label'], 3 - 1) # Test with test_mode=True cfg = {**self.DEFAULT_ARGS, 'test_mode': True} dataset = dataset_class(**cfg) self.assertEqual(len(dataset), 1) data_info = dataset[0] np.testing.assert_equal(data_info['img_prefix'], self.data_prefix) np.testing.assert_equal(data_info['img_info'], {'filename': '1.txt'}) np.testing.assert_equal(data_info['gt_label'], 2 - 1) # Test if the numbers of line are not match cfg = { **self.DEFAULT_ARGS, 'train_test_split_file': self.train_test_split_file2 } with self.assertRaisesRegex(AssertionError, 'should have same length'): dataset_class(**cfg) @classmethod def tearDownClass(cls): cls.tmpdir.cleanup() """