# Copyright (c) OpenMMLab. All rights reserved. import copy import warnings from ..builder import CLASSIFIERS, build_backbone, build_head, build_neck from ..utils.augment import Augments from .base import BaseClassifier @CLASSIFIERS.register_module() class ImageClassifier(BaseClassifier): def __init__(self, backbone, neck=None, head=None, pretrained=None, train_cfg=None, init_cfg=None): super(ImageClassifier, self).__init__(init_cfg) if pretrained is not None: warnings.warn('DeprecationWarning: pretrained is a deprecated \ key, please consider using init_cfg') self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) self.backbone = build_backbone(backbone) if neck is not None: self.neck = build_neck(neck) if head is not None: self.head = build_head(head) self.augments = None if train_cfg is not None: augments_cfg = train_cfg.get('augments', None) if augments_cfg is not None: self.augments = Augments(augments_cfg) else: # Considering BC-breaking mixup_cfg = train_cfg.get('mixup', None) cutmix_cfg = train_cfg.get('cutmix', None) assert mixup_cfg is None or cutmix_cfg is None, \ 'If mixup and cutmix are set simultaneously,' \ 'use augments instead.' if mixup_cfg is not None: warnings.warn('The mixup attribute will be deprecated. ' 'Please use augments instead.') cfg = copy.deepcopy(mixup_cfg) cfg['type'] = 'BatchMixup' # In the previous version, mixup_prob is always 1.0. cfg['prob'] = 1.0 self.augments = Augments(cfg) if cutmix_cfg is not None: warnings.warn('The cutmix attribute will be deprecated. ' 'Please use augments instead.') cfg = copy.deepcopy(cutmix_cfg) cutmix_prob = cfg.pop('cutmix_prob') cfg['type'] = 'BatchCutMix' cfg['prob'] = cutmix_prob self.augments = Augments(cfg) def extract_feat(self, img): """Directly extract features from the backbone + neck.""" x = self.backbone(img) if self.with_neck: x = self.neck(x) return x def forward_train(self, img, gt_label, **kwargs): """Forward computation during training. Args: img (Tensor): of shape (N, C, H, W) encoding input images. Typically these should be mean centered and std scaled. gt_label (Tensor): It should be of shape (N, 1) encoding the ground-truth label of input images for single label task. It shoulf be of shape (N, C) encoding the ground-truth label of input images for multi-labels task. Returns: dict[str, Tensor]: a dictionary of loss components """ if self.augments is not None: img, gt_label = self.augments(img, gt_label) x = self.extract_feat(img) losses = dict() loss = self.head.forward_train(x, gt_label) losses.update(loss) return losses def simple_test(self, img, img_metas): """Test without augmentation.""" x = self.extract_feat(img) x_dims = len(x.shape) if x_dims == 1: x.unsqueeze_(0) return self.head.simple_test(x)