import torch.nn as nn class SELayer(nn.Module): """Squeeze-and-Excitation Module. Args: inplanes (int): The input channels of the SEBottleneck block. ratio (int): Squeeze ratio in SELayer. Default: 16 """ def __init__(self, inplanes, ratio=16): super(SELayer, self).__init__() self.global_avgpool = nn.AdaptiveAvgPool2d(1) self.conv1 = nn.Conv2d( inplanes, int(inplanes / ratio), kernel_size=1, stride=1) self.conv2 = nn.Conv2d( int(inplanes / ratio), inplanes, kernel_size=1, stride=1) self.relu = nn.ReLU(inplace=True) self.sigmoid = nn.Sigmoid() def forward(self, x): out = self.global_avgpool(x) out = self.conv1(out) out = self.relu(out) out = self.conv2(out) out = self.sigmoid(out) return x * out