import random import numpy as np from .builder import build_augment class Augments(object): """Data augments. We implement some data augmentation methods, such as mixup, cutmix. Args: augments_cfg (list[`mmcv.ConfigDict`] | obj:`mmcv.ConfigDict`): Config dict of augments Example: >>> augments_cfg = [ dict(type='BatchCutMix', alpha=1., num_classes=10, prob=0.5), dict(type='BatchMixup', alpha=1., num_classes=10, prob=0.3) ] >>> augments = Augments(augments_cfg) >>> imgs = torch.randn(16, 3, 32, 32) >>> label = torch.randint(0, 10, (16, )) >>> imgs, label = augments(imgs, label) To decide which augmentation within Augments block is used the following rule is applied. We pick augmentation based on the probabilities. In the example above, we decide if we should use BatchCutMix with probability 0.5, BatchMixup 0.3. As Identity is not in augments_cfg, we use Identity with probability 1 - 0.5 - 0.3 = 0.2. """ def __init__(self, augments_cfg): super(Augments, self).__init__() if isinstance(augments_cfg, dict): augments_cfg = [augments_cfg] assert len(augments_cfg) > 0, \ 'The length of augments_cfg should be positive.' self.augments = [build_augment(cfg) for cfg in augments_cfg] self.augment_probs = [aug.prob for aug in self.augments] has_identity = any([cfg['type'] == 'Identity' for cfg in augments_cfg]) if has_identity: assert sum(self.augment_probs) == 1.0,\ 'The sum of augmentation probabilities should equal to 1,' \ ' but got {:.2f}'.format(sum(self.augment_probs)) else: assert sum(self.augment_probs) <= 1.0,\ 'The sum of augmentation probabilities should less than or ' \ 'equal to 1, but got {:.2f}'.format(sum(self.augment_probs)) identity_prob = 1 - sum(self.augment_probs) if identity_prob > 0: num_classes = self.augments[0].num_classes self.augments += [ build_augment( dict( type='Identity', num_classes=num_classes, prob=identity_prob)) ] self.augment_probs += [identity_prob] def __call__(self, img, gt_label): if self.augments: random_state = np.random.RandomState(random.randint(0, 2**32 - 1)) aug = random_state.choice(self.augments, p=self.augment_probs) return aug(img, gt_label) return img, gt_label