_base_ = [ '../_base_/datasets/coco_retrieval.py', '../_base_/default_runtime.py', ] # model settings model = dict( type='BlipRetrieval', tokenizer=dict(type='BlipTokenizer', name_or_path='bert-base-uncased'), vision_backbone=dict( type='VisionTransformer', arch='b', img_size=384, patch_size=16, out_type='raw', ), text_backbone=dict( type='XBertEncoder', med_config=dict( architectures=['BertModel'], attention_probs_dropout_prob=0.1, hidden_act='gelu', hidden_dropout_prob=0.1, hidden_size=768, initializer_range=0.02, intermediate_size=3072, layer_norm_eps=1e-12, max_position_embeddings=512, model_type='bert', num_attention_heads=12, num_hidden_layers=12, pad_token_id=0, add_type_embeddings=False, vocab_size=30524, encoder_width=768, add_cross_attention=True), ), vision_neck=dict( type='Linear', in_features=768, out_features=256, ), text_neck=dict( type='Linear', in_features=768, out_features=256, ), head=dict( type='ITCHead', embed_dim=256, ), multimodal_head=dict( type='ITMHead', hidden_size=768, with_pooler=False, ), topk=256, max_txt_len=35, ) # optimizer optimizer = dict(type='AdamW', lr=2e-5, weight_decay=0.04) optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer) # learning rate scheduler param_scheduler = [dict(type='CosineAnnealingLR', by_epoch=True)] # runtime settings train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=6) val_cfg = dict(type='RetrievalValLoop') test_cfg = dict(type='RetrievalTestLoop') randomness = dict(seed=42) default_hooks = dict(logger=dict(interval=1)) custom_hooks = [ dict( type='WarmupParamHook', param_name='alpha', module_name='head', warmup_epochs=2) ]