_base_ = [ '../../_base_/models/resnet50.py', '../../_base_/datasets/imagenet_bs32_pil_resize.py', '../../_base_/schedules/imagenet_sgd_coslr_100e.py', '../../_base_/default_runtime.py', ] # dataset settings train_dataloader = dict(batch_size=128) model = dict( backbone=dict( frozen_stages=4, norm_eval=True, init_cfg=dict(type='Pretrained', checkpoint='', prefix='backbone.'))) # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.4, momentum=0.9, weight_decay=0.)) # learning rate scheduler param_scheduler = [ dict(type='CosineAnnealingLR', T_max=90, by_epoch=True, begin=0, end=90) ] # runtime settings train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=90) default_hooks = dict( checkpoint=dict(type='CheckpointHook', interval=10, max_keep_ckpts=3))