model = dict( type='ImageClassifier', backbone=dict( type='DaViT', arch='base', out_indices=(3, ), drop_path_rate=0.4), neck=dict(type='GlobalAveragePooling'), head=dict( type='LinearClsHead', num_classes=1000, in_channels=1024, loss=dict( type='LabelSmoothLoss', label_smooth_val=0.1, mode='original'), ), train_cfg=dict(augments=[ dict(type='Mixup', alpha=0.8), dict(type='CutMix', alpha=1.0) ]))