model = dict( type='ImageClassifier', backbone=dict( type='Vig', arch='tiny', k=9, act_cfg=dict(type='GELU'), norm_cfg=dict(type='BN'), graph_conv_type='mr', graph_conv_bias=True, epsilon=0.2, use_dilation=True, use_stochastic=False, drop_path=0.1, relative_pos=False, norm_eval=False, frozen_stages=0), neck=dict(type='GlobalAveragePooling'), head=dict( type='VigClsHead', num_classes=1000, in_channels=192, hidden_dim=1024, act_cfg=dict(type='GELU'), dropout=0., loss=dict(type='CrossEntropyLoss', loss_weight=1.0), topk=(1, 5), ), train_cfg=dict(augments=[ dict(type='Mixup', alpha=0.8), dict(type='CutMix', alpha=1.0) ]), )