_base_ = './_base_.py' model = dict( backbone=dict( stem_channels=160, drop_path_rate=0.1, stage_blocks=[5, 5, 22, 5], groups=[10, 20, 40, 80], layer_scale=1e-5, offset_scale=2.0, post_norm=True), head=dict(in_channels=1920)) train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='RandomResizedCrop', scale=384, backend='pillow', interpolation='bicubic'), dict(type='RandomFlip', prob=0.5, direction='horizontal'), dict(type='PackInputs') ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='ResizeEdge', scale=384, edge='short', backend='pillow', interpolation='bicubic'), dict(type='CenterCrop', crop_size=384), dict(type='PackInputs') ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader optim_wrapper = dict(optimizer=dict(lr=5e-6)) param_scheduler = [ dict( type='LinearLR', by_epoch=True, begin=0, end=2, convert_to_iter_based=True), dict(type='CosineAnnealingLR', T_max=18, by_epoch=True, begin=2, end=20) ] train_cfg = dict(by_epoch=True, max_epochs=20, val_interval=1)