import pytest import torch from torch.nn.modules import AvgPool2d from torch.nn.modules.batchnorm import _BatchNorm from mmcls.models.backbones import ResNet, ResNetV1d from mmcls.models.backbones.resnet import BasicBlock, Bottleneck, ResLayer def is_block(modules): """Check if is ResNet building block.""" if isinstance(modules, (BasicBlock, Bottleneck)): return True return False def is_norm(modules): """Check if is one of the norms.""" if isinstance(modules, (_BatchNorm, )): return True return False def all_zeros(modules): """Check if the weight(and bias) is all zero.""" weight_zero = torch.equal(modules.weight.data, torch.zeros_like(modules.weight.data)) if hasattr(modules, 'bias'): bias_zero = torch.equal(modules.bias.data, torch.zeros_like(modules.bias.data)) else: bias_zero = True return weight_zero and bias_zero def check_norm_state(modules, train_state): """Check if norm layer is in correct train state.""" for mod in modules: if isinstance(mod, _BatchNorm): if mod.training != train_state: return False return True def test_resnet_basic_block(): # Test BasicBlock structure and forward block = BasicBlock(64, 64) assert block.conv1.in_channels == 64 assert block.conv1.out_channels == 64 assert block.conv1.kernel_size == (3, 3) assert block.conv2.in_channels == 64 assert block.conv2.out_channels == 64 assert block.conv2.kernel_size == (3, 3) x = torch.randn(1, 64, 56, 56) x_out = block(x) assert x_out.shape == torch.Size([1, 64, 56, 56]) # Test BasicBlock with checkpoint forward block = BasicBlock(64, 64, with_cp=True) assert block.with_cp x = torch.randn(1, 64, 56, 56) x_out = block(x) assert x_out.shape == torch.Size([1, 64, 56, 56]) def test_resnet_bottleneck(): with pytest.raises(AssertionError): # Style must be in ['pytorch', 'caffe'] Bottleneck(64, 64, style='tensorflow') # Test Bottleneck with checkpoint forward block = Bottleneck(64, 16, with_cp=True) assert block.with_cp x = torch.randn(1, 64, 56, 56) x_out = block(x) assert x_out.shape == torch.Size([1, 64, 56, 56]) # Test Bottleneck style block = Bottleneck(64, 64, stride=2, style='pytorch') assert block.conv1.stride == (1, 1) assert block.conv2.stride == (2, 2) block = Bottleneck(64, 64, stride=2, style='caffe') assert block.conv1.stride == (2, 2) assert block.conv2.stride == (1, 1) # Test Bottleneck forward block = Bottleneck(64, 16) x = torch.randn(1, 64, 56, 56) x_out = block(x) assert x_out.shape == torch.Size([1, 64, 56, 56]) def test_resnet_res_layer(): # Test ResLayer of 3 Bottleneck w\o downsample layer = ResLayer(Bottleneck, 64, 16, 3) assert len(layer) == 3 assert layer[0].conv1.in_channels == 64 assert layer[0].conv1.out_channels == 16 for i in range(1, len(layer)): assert layer[i].conv1.in_channels == 64 assert layer[i].conv1.out_channels == 16 for i in range(len(layer)): assert layer[i].downsample is None x = torch.randn(1, 64, 56, 56) x_out = layer(x) assert x_out.shape == torch.Size([1, 64, 56, 56]) # Test ResLayer of 3 Bottleneck with downsample layer = ResLayer(Bottleneck, 64, 64, 3) assert layer[0].downsample[0].out_channels == 256 for i in range(1, len(layer)): assert layer[i].downsample is None x = torch.randn(1, 64, 56, 56) x_out = layer(x) assert x_out.shape == torch.Size([1, 256, 56, 56]) # Test ResLayer of 3 Bottleneck with stride=2 layer = ResLayer(Bottleneck, 64, 64, 3, stride=2) assert layer[0].downsample[0].out_channels == 256 assert layer[0].downsample[0].stride == (2, 2) for i in range(1, len(layer)): assert layer[i].downsample is None x = torch.randn(1, 64, 56, 56) x_out = layer(x) assert x_out.shape == torch.Size([1, 256, 28, 28]) # Test ResLayer of 3 Bottleneck with stride=2 and average downsample layer = ResLayer(Bottleneck, 64, 64, 3, stride=2, avg_down=True) assert isinstance(layer[0].downsample[0], AvgPool2d) assert layer[0].downsample[1].out_channels == 256 assert layer[0].downsample[1].stride == (1, 1) for i in range(1, len(layer)): assert layer[i].downsample is None x = torch.randn(1, 64, 56, 56) x_out = layer(x) assert x_out.shape == torch.Size([1, 256, 28, 28]) def test_resnet_backbone(): """Test resnet backbone""" with pytest.raises(KeyError): # ResNet depth should be in [18, 34, 50, 101, 152] ResNet(20) with pytest.raises(AssertionError): # In ResNet: 1 <= num_stages <= 4 ResNet(50, num_stages=0) with pytest.raises(AssertionError): # In ResNet: 1 <= num_stages <= 4 ResNet(50, num_stages=5) with pytest.raises(AssertionError): # len(strides) == len(dilations) == num_stages ResNet(50, strides=(1, ), dilations=(1, 1), num_stages=3) with pytest.raises(TypeError): # pretrained must be a string path model = ResNet(50) model.init_weights(pretrained=0) with pytest.raises(AssertionError): # Style must be in ['pytorch', 'caffe'] ResNet(50, style='tensorflow') # Test ResNet50 norm_eval=True model = ResNet(50, norm_eval=True) model.init_weights() model.train() assert check_norm_state(model.modules(), False) # Test ResNet50 with torchvision pretrained weight model = ResNet(depth=50, norm_eval=True) model.init_weights('torchvision://resnet50') model.train() assert check_norm_state(model.modules(), False) # Test ResNet50 with first stage frozen frozen_stages = 1 model = ResNet(50, frozen_stages=frozen_stages) model.init_weights() model.train() assert model.norm1.training is False for layer in [model.conv1, model.norm1]: for param in layer.parameters(): assert param.requires_grad is False for i in range(1, frozen_stages + 1): layer = getattr(model, f'layer{i}') for mod in layer.modules(): if isinstance(mod, _BatchNorm): assert mod.training is False for param in layer.parameters(): assert param.requires_grad is False # Test ResNet50V1d with first stage frozen model = ResNetV1d(depth=50, frozen_stages=frozen_stages) assert len(model.stem) == 9 model.init_weights() model.train() check_norm_state(model.stem, False) for param in model.stem.parameters(): assert param.requires_grad is False for i in range(1, frozen_stages + 1): layer = getattr(model, f'layer{i}') for mod in layer.modules(): if isinstance(mod, _BatchNorm): assert mod.training is False for param in layer.parameters(): assert param.requires_grad is False # Test ResNet18 forward model = ResNet(18, out_indices=(0, 1, 2, 3)) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 64, 56, 56]) assert feat[1].shape == torch.Size([1, 128, 28, 28]) assert feat[2].shape == torch.Size([1, 256, 14, 14]) assert feat[3].shape == torch.Size([1, 512, 7, 7]) # Test ResNet50 with BatchNorm forward model = ResNet(50, out_indices=(0, 1, 2, 3)) for m in model.modules(): if is_norm(m): assert isinstance(m, _BatchNorm) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 256, 56, 56]) assert feat[1].shape == torch.Size([1, 512, 28, 28]) assert feat[2].shape == torch.Size([1, 1024, 14, 14]) assert feat[3].shape == torch.Size([1, 2048, 7, 7]) # Test ResNet50 with layers 1, 2, 3 out forward model = ResNet(50, out_indices=(0, 1, 2)) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 3 assert feat[0].shape == torch.Size([1, 256, 56, 56]) assert feat[1].shape == torch.Size([1, 512, 28, 28]) assert feat[2].shape == torch.Size([1, 1024, 14, 14]) # Test ResNet50 with layers 3 (top feature maps) out forward model = ResNet(50, out_indices=(3, )) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert feat.shape == torch.Size([1, 2048, 7, 7]) # Test ResNet50 with checkpoint forward model = ResNet(50, out_indices=(0, 1, 2, 3), with_cp=True) for m in model.modules(): if is_block(m): assert m.with_cp model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 256, 56, 56]) assert feat[1].shape == torch.Size([1, 512, 28, 28]) assert feat[2].shape == torch.Size([1, 1024, 14, 14]) assert feat[3].shape == torch.Size([1, 2048, 7, 7]) # Test ResNet50 zero initialization of residual model = ResNet(50, out_indices=(0, 1, 2, 3), zero_init_residual=True) model.init_weights() for m in model.modules(): if isinstance(m, Bottleneck): assert all_zeros(m.norm3) elif isinstance(m, BasicBlock): assert all_zeros(m.norm2) model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 256, 56, 56]) assert feat[1].shape == torch.Size([1, 512, 28, 28]) assert feat[2].shape == torch.Size([1, 1024, 14, 14]) assert feat[3].shape == torch.Size([1, 2048, 7, 7]) # Test ResNetV1d forward model = ResNetV1d(depth=50, out_indices=(0, 1, 2, 3)) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 4 assert feat[0].shape == torch.Size([1, 256, 56, 56]) assert feat[1].shape == torch.Size([1, 512, 28, 28]) assert feat[2].shape == torch.Size([1, 1024, 14, 14]) assert feat[3].shape == torch.Size([1, 2048, 7, 7])