# Copyright (c) OpenMMLab. All rights reserved. import platform import pytest import torch from mmpretrain.models import SwAV from mmpretrain.structures import DataSample @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows mem limit') def test_swav(): data_preprocessor = { 'mean': (123.675, 116.28, 103.53), 'std': (58.395, 57.12, 57.375), 'to_rgb': True } backbone = dict( type='ResNet', depth=18, norm_cfg=dict(type='BN'), zero_init_residual=True) neck = dict( type='SwAVNeck', in_channels=512, hid_channels=2, out_channels=2, norm_cfg=dict(type='BN1d'), with_avg_pool=True) head = dict( type='SwAVHead', loss=dict( type='SwAVLoss', feat_dim=2, # equal to neck['out_channels'] epsilon=0.05, temperature=0.1, num_crops=[2, 6])) alg = SwAV( backbone=backbone, neck=neck, head=head, data_preprocessor=data_preprocessor) fake_data = { 'inputs': [ torch.randn((2, 3, 224, 224)), torch.randn((2, 3, 224, 224)), torch.randn((2, 3, 96, 96)), torch.randn((2, 3, 96, 96)), torch.randn((2, 3, 96, 96)), torch.randn((2, 3, 96, 96)), torch.randn((2, 3, 96, 96)), torch.randn((2, 3, 96, 96)) ], 'data_samples': [DataSample() for _ in range(2)] } fake_inputs = alg.data_preprocessor(fake_data) fake_outputs = alg(**fake_inputs, mode='loss') assert isinstance(fake_outputs['loss'].item(), float)