import mmcv import numpy as np from ..builder import PIPELINES def random_negative(value, random_negative_prob): """Randomly negate value based on random_negative_prob.""" return -value if np.random.rand() < random_negative_prob else value @PIPELINES.register_module() class Shear(object): """Shear images. Args: magnitude (int | float): The magnitude used for shear. pad_val (int, tuple[int]): Pixel pad_val value for constant fill. If a tuple of length 3, it is used to pad_val R, G, B channels respectively. Defaults to 128. prob (float): The probability for performing Shear therefore should be in range [0, 1]. Defaults to 0.5. direction (str): The shearing direction. Options are 'horizontal' and 'vertical'. Defaults to 'horizontal'. random_negative_prob (float): The probability that turns the magnitude negative, which should be in range [0,1]. Defaults to 0.5. interpolation (str): Interpolation method. Options are 'nearest', 'bilinear', 'bicubic', 'area', 'lanczos'. Defaults to 'bicubic'. """ def __init__(self, magnitude, pad_val=128, prob=0.5, direction='horizontal', random_negative_prob=0.5, interpolation='bicubic'): assert isinstance(magnitude, (int, float)), 'The magnitude type must '\ f'be int or float, but got {type(magnitude)} instead.' if isinstance(pad_val, int): pad_val = tuple([pad_val] * 3) elif isinstance(pad_val, tuple): assert len(pad_val) == 3, 'pad_val as a tuple must have 3 ' \ f'elements, got {len(pad_val)} instead.' assert all(isinstance(i, int) for i in pad_val), 'pad_val as a '\ 'tuple must got elements of int type.' else: raise TypeError('pad_val must be int or tuple with 3 elements.') assert 0 <= prob <= 1.0, 'The prob should be in range [0,1], ' \ f'got {prob} instead.' assert direction in ('horizontal', 'vertical'), 'direction must be ' \ f'either "horizontal" or "vertical", got {direction} instead.' assert 0 <= random_negative_prob <= 1.0, 'The random_negative_prob ' \ f'should be in range [0,1], got {random_negative_prob} instead.' self.magnitude = magnitude self.pad_val = pad_val self.prob = prob self.direction = direction self.random_negative_prob = random_negative_prob self.interpolation = interpolation def __call__(self, results): if np.random.rand() > self.prob: return results magnitude = random_negative(self.magnitude, self.random_negative_prob) for key in results.get('img_fields', ['img']): img = results[key] img_sheared = mmcv.imshear( img, magnitude, direction=self.direction, border_value=self.pad_val, interpolation=self.interpolation) results[key] = img_sheared.astype(img.dtype) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(magnitude={self.magnitude}, ' repr_str += f'pad_val={self.pad_val}, ' repr_str += f'prob={self.prob}, ' repr_str += f'direction={self.direction}, ' repr_str += f'random_negative_prob={self.random_negative_prob}, ' repr_str += f'interpolation={self.interpolation})' return repr_str @PIPELINES.register_module() class Translate(object): """Translate images. Args: magnitude (int | float): The magnitude used for translate. Note that the offset is calculated by magnitude * size in the corresponding direction. With a magnitude of 1, the whole image will be moved out of the range. pad_val (int, tuple[int]): Pixel pad_val value for constant fill. If a tuple of length 3, it is used to pad_val R, G, B channels respectively. Defaults to 128. prob (float): The probability for performing translate therefore should be in range [0, 1]. Defaults to 0.5. direction (str): The translating direction. Options are 'horizontal' and 'vertical'. Defaults to 'horizontal'. random_negative_prob (float): The probability that turns the magnitude negative, which should be in range [0,1]. Defaults to 0.5. interpolation (str): Interpolation method. Options are 'nearest', 'bilinear', 'bicubic', 'area', 'lanczos'. Defaults to 'nearest'. """ def __init__(self, magnitude, pad_val=128, prob=0.5, direction='horizontal', random_negative_prob=0.5, interpolation='nearest'): assert isinstance(magnitude, (int, float)), 'The magnitude type must '\ f'be int or float, but got {type(magnitude)} instead.' if isinstance(pad_val, int): pad_val = tuple([pad_val] * 3) elif isinstance(pad_val, tuple): assert len(pad_val) == 3, 'pad_val as a tuple must have 3 ' \ f'elements, got {len(pad_val)} instead.' assert all(isinstance(i, int) for i in pad_val), 'pad_val as a '\ 'tuple must got elements of int type.' else: raise TypeError('pad_val must be int or tuple with 3 elements.') assert 0 <= prob <= 1.0, 'The prob should be in range [0,1], ' \ f'got {prob} instead.' assert direction in ('horizontal', 'vertical'), 'direction must be ' \ f'either "horizontal" or "vertical", got {direction} instead.' assert 0 <= random_negative_prob <= 1.0, 'The random_negative_prob ' \ f'should be in range [0,1], got {random_negative_prob} instead.' self.magnitude = magnitude self.pad_val = pad_val self.prob = prob self.direction = direction self.random_negative_prob = random_negative_prob self.interpolation = interpolation def __call__(self, results): if np.random.rand() > self.prob: return results magnitude = random_negative(self.magnitude, self.random_negative_prob) for key in results.get('img_fields', ['img']): img = results[key] height, width = img.shape[:2] if self.direction == 'horizontal': offset = magnitude * width else: offset = magnitude * height img_translated = mmcv.imtranslate( img, offset, direction=self.direction, border_value=self.pad_val, interpolation=self.interpolation) results[key] = img_translated.astype(img.dtype) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(magnitude={self.magnitude}, ' repr_str += f'pad_val={self.pad_val}, ' repr_str += f'prob={self.prob}, ' repr_str += f'direction={self.direction}, ' repr_str += f'random_negative_prob={self.random_negative_prob}, ' repr_str += f'interpolation={self.interpolation})' return repr_str @PIPELINES.register_module() class Rotate(object): """Rotate images. Args: angle (float): The angle used for rotate. Positive values stand for clockwise rotation. center (tuple[float], optional): Center point (w, h) of the rotation in the source image. If None, the center of the image will be used. defaults to None. scale (float): Isotropic scale factor. Defaults to 1.0. pad_val (int, tuple[int]): Pixel pad_val value for constant fill. If a tuple of length 3, it is used to pad_val R, G, B channels respectively. Defaults to 128. prob (float): The probability for performing Rotate therefore should be in range [0, 1]. Defaults to 0.5. random_negative_prob (float): The probability that turns the angle negative, which should be in range [0,1]. Defaults to 0.5. interpolation (str): Interpolation method. Options are 'nearest', 'bilinear', 'bicubic', 'area', 'lanczos'. Defaults to 'nearest'. """ def __init__(self, angle, center=None, scale=1.0, pad_val=128, prob=0.5, random_negative_prob=0.5, interpolation='nearest'): assert isinstance(angle, float), 'The angle type must be float, but ' \ f'got {type(angle)} instead.' if isinstance(center, tuple): assert len(center) == 2, 'center as a tuple must have 2 ' \ f'elements, got {len(center)} elements instead.' else: assert center is None, 'The center type' \ f'must be tuple or None, got {type(center)} instead.' assert isinstance(scale, float), 'the scale type must be float, but ' \ f'got {type(scale)} instead.' if isinstance(pad_val, int): pad_val = tuple([pad_val] * 3) elif isinstance(pad_val, tuple): assert len(pad_val) == 3, 'pad_val as a tuple must have 3 ' \ f'elements, got {len(pad_val)} instead.' assert all(isinstance(i, int) for i in pad_val), 'pad_val as a '\ 'tuple must got elements of int type.' else: raise TypeError('pad_val must be int or tuple with 3 elements.') assert 0 <= prob <= 1.0, 'The prob should be in range [0,1], ' \ f'got {prob} instead.' assert 0 <= random_negative_prob <= 1.0, 'The random_negative_prob ' \ f'should be in range [0,1], got {random_negative_prob} instead.' self.angle = angle self.center = center self.scale = scale self.pad_val = pad_val self.prob = prob self.random_negative_prob = random_negative_prob self.interpolation = interpolation def __call__(self, results): if np.random.rand() > self.prob: return results angle = random_negative(self.angle, self.random_negative_prob) for key in results.get('img_fields', ['img']): img = results[key] img_rotated = mmcv.imrotate( img, angle, center=self.center, scale=self.scale, border_value=self.pad_val, interpolation=self.interpolation) results[key] = img_rotated.astype(img.dtype) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(angle={self.angle}, ' repr_str += f'center={self.center}, ' repr_str += f'scale={self.scale}, ' repr_str += f'pad_val={self.pad_val}, ' repr_str += f'prob={self.prob}, ' repr_str += f'random_negative_prob={self.random_negative_prob}, ' repr_str += f'interpolation={self.interpolation})' return repr_str @PIPELINES.register_module() class Invert(object): """Invert images. Args: prob (float): The probability for performing invert therefore should be in range [0, 1]. Defaults to 0.5. """ def __init__(self, prob=0.5): assert 0 <= prob <= 1.0, 'The prob should be in range [0,1], ' \ f'got {prob} instead.' self.prob = prob def __call__(self, results): if np.random.rand() > self.prob: return results for key in results.get('img_fields', ['img']): img = results[key] img_inverted = mmcv.iminvert(img) results[key] = img_inverted.astype(img.dtype) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(prob={self.prob})' return repr_str @PIPELINES.register_module() class ColorTransform(object): """Adjust the color balance of images. Args: magnitude (int | float): The magnitude used for color transform. A positive magnitude would enhance the color and a negative magnitude would make the image grayer. A magnitude=0 gives the origin img. prob (float): The probability for performing ColorTransform therefore should be in range [0, 1]. Defaults to 0.5. random_negative_prob (float): The probability that turns the magnitude negative, which should be in range [0,1]. Defaults to 0.5. """ def __init__(self, magnitude, prob=0.5, random_negative_prob=0.5): assert isinstance(magnitude, (int, float)), 'The magnitude type must '\ f'be int or float, but got {type(magnitude)} instead.' assert 0 <= prob <= 1.0, 'The prob should be in range [0,1], ' \ f'got {prob} instead.' assert 0 <= random_negative_prob <= 1.0, 'The random_negative_prob ' \ f'should be in range [0,1], got {random_negative_prob} instead.' self.magnitude = magnitude self.prob = prob self.random_negative_prob = random_negative_prob def __call__(self, results): if np.random.rand() > self.prob: return results magnitude = random_negative(self.magnitude, self.random_negative_prob) for key in results.get('img_fields', ['img']): img = results[key] img_color_adjusted = mmcv.adjust_color(img, alpha=1 + magnitude) results[key] = img_color_adjusted.astype(img.dtype) return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(magnitude={self.magnitude}, ' repr_str += f'prob={self.prob}, ' repr_str += f'random_negative_prob={self.random_negative_prob})' return repr_str