import os import os.path import pickle import numpy as np from .base_dataset import BaseDataset from .builder import DATASETS from .utils import check_integrity, download_and_extract_archive @DATASETS.register_module() class CIFAR10(BaseDataset): """`CIFAR10 `_ Dataset. This implementation is modified from https://github.com/pytorch/vision/blob/master/torchvision/datasets/cifar.py # noqa: E501 """ base_folder = 'cifar-10-batches-py' url = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz' filename = 'cifar-10-python.tar.gz' tgz_md5 = 'c58f30108f718f92721af3b95e74349a' train_list = [ ['data_batch_1', 'c99cafc152244af753f735de768cd75f'], ['data_batch_2', 'd4bba439e000b95fd0a9bffe97cbabec'], ['data_batch_3', '54ebc095f3ab1f0389bbae665268c751'], ['data_batch_4', '634d18415352ddfa80567beed471001a'], ['data_batch_5', '482c414d41f54cd18b22e5b47cb7c3cb'], ] test_list = [ ['test_batch', '40351d587109b95175f43aff81a1287e'], ] meta = { 'filename': 'batches.meta', 'key': 'label_names', 'md5': '5ff9c542aee3614f3951f8cda6e48888', } def load_annotations(self): if not self._check_integrity(): download_and_extract_archive( self.url, self.data_prefix, filename=self.filename, md5=self.tgz_md5) if not self.test_mode: downloaded_list = self.train_list else: downloaded_list = self.test_list self.imgs = [] self.gt_labels = [] # load the picked numpy arrays for file_name, checksum in downloaded_list: file_path = os.path.join(self.data_prefix, self.base_folder, file_name) with open(file_path, 'rb') as f: entry = pickle.load(f, encoding='latin1') self.imgs.append(entry['data']) if 'labels' in entry: self.gt_labels.extend(entry['labels']) else: self.gt_labels.extend(entry['fine_labels']) self.imgs = np.vstack(self.imgs).reshape(-1, 3, 32, 32) self.imgs = self.imgs.transpose((0, 2, 3, 1)) # convert to HWC self._load_meta() data_infos = [] for img, gt_label in zip(self.imgs, self.gt_labels): gt_label = np.array(gt_label, dtype=np.int64) info = {'img': img, 'gt_label': gt_label} data_infos.append(info) return data_infos def _load_meta(self): path = os.path.join(self.data_prefix, self.base_folder, self.meta['filename']) if not check_integrity(path, self.meta['md5']): raise RuntimeError( 'Dataset metadata file not found or corrupted.' + ' You can use download=True to download it') with open(path, 'rb') as infile: data = pickle.load(infile, encoding='latin1') self.CLASSES = data[self.meta['key']] self.class_to_idx = { _class: i for i, _class in enumerate(self.CLASSES) } def _check_integrity(self): root = self.data_prefix for fentry in (self.train_list + self.test_list): filename, md5 = fentry[0], fentry[1] fpath = os.path.join(root, self.base_folder, filename) if not check_integrity(fpath, md5): return False return True @DATASETS.register_module() class CIFAR100(CIFAR10): """`CIFAR100 `_ Dataset. """ base_folder = 'cifar-100-python' url = 'https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz' filename = 'cifar-100-python.tar.gz' tgz_md5 = 'eb9058c3a382ffc7106e4002c42a8d85' train_list = [ ['train', '16019d7e3df5f24257cddd939b257f8d'], ] test_list = [ ['test', 'f0ef6b0ae62326f3e7ffdfab6717acfc'], ] meta = { 'filename': 'meta', 'key': 'fine_label_names', 'md5': '7973b15100ade9c7d40fb424638fde48', }