import torch.nn as nn from ..builder import CLASSIFIERS, build_backbone, build_head, build_neck from .base import BaseClassifier @CLASSIFIERS.register_module() class ImageClassifier(BaseClassifier): def __init__(self, backbone, neck=None, head=None, pretrained=None): super(ImageClassifier, self).__init__() self.backbone = build_backbone(backbone) if neck is not None: self.neck = build_neck(neck) if head is not None: self.head = build_head(head) self.init_weights(pretrained=pretrained) def init_weights(self, pretrained=None): super(ImageClassifier, self).init_weights(pretrained) self.backbone.init_weights(pretrained=pretrained) if self.with_neck: if isinstance(self.neck, nn.Sequential): for m in self.neck: m.init_weights() else: self.neck.init_weights() if self.with_head: self.head.init_weights() def extract_feat(self, img): """Directly extract features from the backbone + neck """ x = self.backbone(img) if self.with_neck: x = self.neck(x) return x def forward_train(self, img, gt_label, **kwargs): """Forward computation during training. Args: img (Tensor): of shape (N, C, H, W) encoding input images. Typically these should be mean centered and std scaled. gt_label (Tensor): It should be of shape (N, 1) encoding the ground-truth label of input images for single label task. It shoulf be of shape (N, C) encoding the ground-truth label of input images for multi-labels task. Returns: dict[str, Tensor]: a dictionary of loss components """ x = self.extract_feat(img) losses = dict() loss = self.head.forward_train(x, gt_label) losses.update(loss) return losses def simple_test(self, img, img_metas): """Test without augmentation.""" x = self.extract_feat(img) return self.head.simple_test(x)