# Copyright (c) Open-MMLab. All rights reserved. import numpy as np import torch.nn as nn def constant_init(module, val, bias=0): if hasattr(module, 'weight') and module.weight is not None: nn.init.constant_(module.weight, val) if hasattr(module, 'bias') and module.bias is not None: nn.init.constant_(module.bias, bias) def xavier_init(module, gain=1, bias=0, distribution='normal'): assert distribution in ['uniform', 'normal'] if distribution == 'uniform': nn.init.xavier_uniform_(module.weight, gain=gain) else: nn.init.xavier_normal_(module.weight, gain=gain) if hasattr(module, 'bias') and module.bias is not None: nn.init.constant_(module.bias, bias) def normal_init(module, mean=0, std=1, bias=0): nn.init.normal_(module.weight, mean, std) if hasattr(module, 'bias') and module.bias is not None: nn.init.constant_(module.bias, bias) def uniform_init(module, a=0, b=1, bias=0): nn.init.uniform_(module.weight, a, b) if hasattr(module, 'bias') and module.bias is not None: nn.init.constant_(module.bias, bias) def kaiming_init(module, a=0, mode='fan_out', nonlinearity='relu', bias=0, distribution='normal'): assert distribution in ['uniform', 'normal'] if distribution == 'uniform': nn.init.kaiming_uniform_( module.weight, a=a, mode=mode, nonlinearity=nonlinearity) else: nn.init.kaiming_normal_( module.weight, a=a, mode=mode, nonlinearity=nonlinearity) if hasattr(module, 'bias') and module.bias is not None: nn.init.constant_(module.bias, bias) def caffe2_xavier_init(module, bias=0): # `XavierFill` in Caffe2 corresponds to `kaiming_uniform_` in PyTorch # Acknowledgment to FAIR's internal code kaiming_init( module, a=1, mode='fan_in', nonlinearity='leaky_relu', distribution='uniform') def bias_init_with_prob(prior_prob): """ initialize conv/fc bias value according to giving probablity""" bias_init = float(-np.log((1 - prior_prob) / prior_prob)) return bias_init