# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp from collections import OrderedDict import mmengine import torch from mmengine.runner import CheckpointLoader def convert_davit(ckpt): new_ckpt = OrderedDict() for k, v in list(ckpt.items()): new_v = v if k.startswith('patch_embeds.0'): new_k = k.replace('patch_embeds.0', 'patch_embed') new_k = new_k.replace('proj', 'projection') elif k.startswith('patch_embeds'): if k.startswith('patch_embeds.1'): new_k = k.replace('patch_embeds.1', 'stages.0.downsample') elif k.startswith('patch_embeds.2'): new_k = k.replace('patch_embeds.2', 'stages.1.downsample') elif k.startswith('patch_embeds.3'): new_k = k.replace('patch_embeds.3', 'stages.2.downsample') new_k = new_k.replace('proj', 'projection') elif k.startswith('main_blocks'): new_k = k.replace('main_blocks', 'stages') for num_stages in range(4): for num_blocks in range(9): if f'{num_stages}.{num_blocks}.0' in k: new_k = new_k.replace( f'{num_stages}.{num_blocks}.0', f'{num_stages}.blocks.{num_blocks}.spatial_block') elif f'{num_stages}.{num_blocks}.1' in k: new_k = new_k.replace( f'{num_stages}.{num_blocks}.1', f'{num_stages}.blocks.{num_blocks}.channel_block') if 'cpe.0' in k: new_k = new_k.replace('cpe.0', 'cpe1') elif 'cpe.1' in k: new_k = new_k.replace('cpe.1', 'cpe2') if 'mlp' in k: new_k = new_k.replace('mlp.fc1', 'ffn.layers.0.0') new_k = new_k.replace('mlp.fc2', 'ffn.layers.1') if 'spatial_block.attn' in new_k: new_k = new_k.replace('spatial_block.attn', 'spatial_block.attn.w_msa') elif k.startswith('norms'): new_k = k.replace('norms', 'norm3') elif k.startswith('head'): new_k = k.replace('head', 'head.fc') else: new_k = k if not new_k.startswith('head'): new_k = 'backbone.' + new_k new_ckpt[new_k] = new_v return new_ckpt def main(): parser = argparse.ArgumentParser( description='Convert keys in pretrained davit ' 'models to mmpretrain style.') parser.add_argument('src', help='src model path or url') # The dst path must be a full path of the new checkpoint. parser.add_argument('dst', help='save path') args = parser.parse_args() checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu') if 'state_dict' in checkpoint: state_dict = checkpoint['state_dict'] else: state_dict = checkpoint weight = convert_davit(state_dict) mmengine.mkdir_or_exist(osp.dirname(args.dst)) torch.save(weight, args.dst) print('Done!!') if __name__ == '__main__': main()