# Copyright (c) OpenMMLab. All rights reserved. import argparse import datetime import subprocess from pathlib import Path import torch from mmcv import digit_version def parse_args(): parser = argparse.ArgumentParser( description='Process a checkpoint to be published') parser.add_argument('in_file', help='input checkpoint filename') parser.add_argument('out_file', help='output checkpoint filename') args = parser.parse_args() return args def process_checkpoint(in_file, out_file): checkpoint = torch.load(in_file, map_location='cpu') # remove optimizer for smaller file size if 'optimizer' in checkpoint: del checkpoint['optimizer'] # if it is necessary to remove some sensitive data in checkpoint['meta'], # add the code here. if digit_version(torch.__version__) >= digit_version('1.6'): torch.save(checkpoint, out_file, _use_new_zipfile_serialization=False) else: torch.save(checkpoint, out_file) sha = subprocess.check_output(['sha256sum', out_file]).decode() if out_file.endswith('.pth'): out_file_name = out_file[:-4] else: out_file_name = out_file current_date = datetime.datetime.now().strftime('%Y%m%d') final_file = out_file_name + f'_{current_date}-{sha[:8]}.pth' subprocess.Popen(['mv', out_file, final_file]) print(f'Successfully generated the publish-ckpt as {final_file}.') def main(): args = parse_args() out_dir = Path(args.out_file).parent if not out_dir.exists(): raise ValueError(f'Directory {out_dir} does not exist, ' 'please generate it manually.') process_checkpoint(args.in_file, args.out_file) if __name__ == '__main__': main()