# Copyright (c) OpenMMLab. All rights reserved. from math import cos, pi from typing import Optional import torch import torch.nn as nn from mmengine.logging import MessageHub from mmengine.model import ExponentialMovingAverage from mmpretrain.registry import MODELS @MODELS.register_module() class CosineEMA(ExponentialMovingAverage): """CosineEMA is implemented for updating momentum parameter, used in BYOL, MoCoV3, etc. The momentum parameter is updated with cosine annealing, including momentum adjustment following: .. math:: m = m_1 - (m_1 - m_0) * (cos(pi * k / K) + 1) / 2 where :math:`k` is the current step, :math:`K` is the total steps. Args: model (nn.Module): The model to be averaged. momentum (float): The momentum used for updating ema parameter. Ema's parameter are updated with the formula: `averaged_param = momentum * averaged_param + (1-momentum) * source_param`. Defaults to 0.996. end_momentum (float): The end momentum value for cosine annealing. Defaults to 1. interval (int): Interval between two updates. Defaults to 1. device (torch.device, optional): If provided, the averaged model will be stored on the :attr:`device`. Defaults to None. update_buffers (bool): if True, it will compute running averages for both the parameters and the buffers of the model. Defaults to False. """ def __init__(self, model: nn.Module, momentum: float = 0.996, end_momentum: float = 1., interval: int = 1, device: Optional[torch.device] = None, update_buffers: bool = False) -> None: super().__init__( model=model, momentum=momentum, interval=interval, device=device, update_buffers=update_buffers) self.end_momentum = end_momentum def avg_func(self, averaged_param: torch.Tensor, source_param: torch.Tensor, steps: int) -> None: """Compute the moving average of the parameters using the cosine momentum strategy. Args: averaged_param (Tensor): The averaged parameters. source_param (Tensor): The source parameters. steps (int): The number of times the parameters have been updated. Returns: Tensor: The averaged parameters. """ message_hub = MessageHub.get_current_instance() max_iters = message_hub.get_info('max_iters') momentum = self.end_momentum - (self.end_momentum - self.momentum) * ( cos(pi * steps / float(max_iters)) + 1) / 2 averaged_param.mul_(momentum).add_(source_param, alpha=(1 - momentum))