# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp import re import time from pathlib import Path from pprint import pformat import matplotlib.pyplot as plt import mmcv import torch.nn as nn from mmcv import Config, DictAction, ProgressBar from mmcv.runner import (EpochBasedRunner, IterBasedRunner, IterLoader, build_optimizer) from torch.utils.data import DataLoader from mmcls.utils import get_root_logger class DummyEpochBasedRunner(EpochBasedRunner): """Fake Epoch-based Runner. This runner won't train model, and it will only call hooks and return all learning rate in each iteration. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.progress_bar = ProgressBar(self._max_epochs, start=False) def train(self, data_loader, **kwargs): lr_list = [] self.model.train() self.mode = 'train' self.data_loader = data_loader self._max_iters = self._max_epochs * len(self.data_loader) self.call_hook('before_train_epoch') for i in range(len(self.data_loader)): self._inner_iter = i self.call_hook('before_train_iter') lr_list.append(self.current_lr()) self.call_hook('after_train_iter') self._iter += 1 self.call_hook('after_train_epoch') self._epoch += 1 self.progress_bar.update(1) return lr_list def run(self, data_loaders, workflow, **kwargs): assert isinstance(data_loaders, list) assert mmcv.is_list_of(workflow, tuple) assert len(data_loaders) == len(workflow) assert self._max_epochs is not None, ( 'max_epochs must be specified during instantiation') for i, flow in enumerate(workflow): mode, epochs = flow if mode == 'train': self._max_iters = self._max_epochs * len(data_loaders[i]) break self.logger.info('workflow: %s, max: %d epochs', workflow, self._max_epochs) self.call_hook('before_run') self.progress_bar.start() lr_list = [] while self.epoch < self._max_epochs: for i, flow in enumerate(workflow): mode, epochs = flow if isinstance(mode, str): # self.train() if not hasattr(self, mode): raise ValueError( f'runner has no method named "{mode}" to run an ' 'epoch') epoch_runner = getattr(self, mode) else: raise TypeError( 'mode in workflow must be a str, but got {}'.format( type(mode))) for _ in range(epochs): if mode == 'train' and self.epoch >= self._max_epochs: break lr_list.extend(epoch_runner(data_loaders[i], **kwargs)) self.progress_bar.file.write('\n') time.sleep(1) # wait for some hooks like loggers to finish self.call_hook('after_run') return lr_list class DummyIterBasedRunner(IterBasedRunner): """Fake Iter-based Runner. This runner won't train model, and it will only call hooks and return all learning rate in each iteration. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.progress_bar = ProgressBar(self._max_iters, start=False) def train(self, data_loader, **kwargs): lr_list = [] self.model.train() self.mode = 'train' self.data_loader = data_loader self._epoch = data_loader.epoch next(data_loader) self.call_hook('before_train_iter') lr_list.append(self.current_lr()) self.call_hook('after_train_iter') self._inner_iter += 1 self._iter += 1 self.progress_bar.update(1) return lr_list def run(self, data_loaders, workflow, **kwargs): assert isinstance(data_loaders, list) assert mmcv.is_list_of(workflow, tuple) assert len(data_loaders) == len(workflow) assert self._max_iters is not None, ( 'max_iters must be specified during instantiation') self.logger.info('workflow: %s, max: %d iters', workflow, self._max_iters) self.call_hook('before_run') iter_loaders = [IterLoader(x) for x in data_loaders] self.call_hook('before_epoch') self.progress_bar.start() lr_list = [] while self.iter < self._max_iters: for i, flow in enumerate(workflow): self._inner_iter = 0 mode, iters = flow if not isinstance(mode, str) or not hasattr(self, mode): raise ValueError( 'runner has no method named "{}" to run a workflow'. format(mode)) iter_runner = getattr(self, mode) for _ in range(iters): if mode == 'train' and self.iter >= self._max_iters: break lr_list.extend(iter_runner(iter_loaders[i], **kwargs)) self.progress_bar.file.write('\n') time.sleep(1) # wait for some hooks like loggers to finish self.call_hook('after_epoch') self.call_hook('after_run') return lr_list class SimpleModel(nn.Module): """simple model that do nothing in train_step.""" def __init__(self): super(SimpleModel, self).__init__() self.conv = nn.Conv2d(1, 1, 1) def train_step(self, *args, **kwargs): pass def parse_args(): parser = argparse.ArgumentParser( description='Visualize a Dataset Pipeline') parser.add_argument('config', help='config file path') parser.add_argument( '--dataset-size', type=int, help='The size of the dataset. If specify, `build_dataset` will ' 'be skipped and use this size as the dataset size.') parser.add_argument( '--ngpus', type=int, default=1, help='The number of GPUs used in training.') parser.add_argument('--title', type=str, help='title of figure') parser.add_argument( '--style', type=str, default='whitegrid', help='style of plt') parser.add_argument( '--save-path', type=Path, help='The learning rate curve plot save path') parser.add_argument( '--window-size', default='12*7', help='Size of the window to display images, in format of "$W*$H".') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') args = parser.parse_args() if args.window_size != '': assert re.match(r'\d+\*\d+', args.window_size), \ "'window-size' must be in format 'W*H'." return args def plot_curve(lr_list, args, iters_per_epoch, by_epoch=True): """Plot learning rate vs iter graph.""" try: import seaborn as sns sns.set_style(args.style) except ImportError: print("Attention: The plot style won't be applied because 'seaborn' " 'package is not installed, please install it if you want better ' 'show style.') wind_w, wind_h = args.window_size.split('*') wind_w, wind_h = int(wind_w), int(wind_h) plt.figure(figsize=(wind_w, wind_h)) # if legend is None, use {filename}_{key} as legend ax: plt.Axes = plt.subplot() ax.plot(lr_list, linewidth=1) if by_epoch: ax.xaxis.tick_top() ax.set_xlabel('Iters') ax.xaxis.set_label_position('top') sec_ax = ax.secondary_xaxis( 'bottom', functions=(lambda x: x / iters_per_epoch, lambda y: y * iters_per_epoch)) sec_ax.set_xlabel('Epochs') # ticks = range(0, len(lr_list), iters_per_epoch) # plt.xticks(ticks=ticks, labels=range(len(ticks))) else: plt.xlabel('Iters') plt.ylabel('Learning Rate') if args.title is None: plt.title(f'{osp.basename(args.config)} Learning Rate curve') else: plt.title(args.title) if args.save_path: plt.savefig(args.save_path) print(f'The learning rate graph is saved at {args.save_path}') plt.show() def simulate_train(data_loader, cfg, by_epoch=True): # build logger, data_loader, model and optimizer logger = get_root_logger() data_loaders = [data_loader] model = SimpleModel() optimizer = build_optimizer(model, cfg.optimizer) # build runner if by_epoch: runner = DummyEpochBasedRunner( max_epochs=cfg.runner.max_epochs, model=model, optimizer=optimizer, logger=logger) else: runner = DummyIterBasedRunner( max_iters=cfg.runner.max_iters, model=model, optimizer=optimizer, logger=logger) # register hooks runner.register_training_hooks( lr_config=cfg.lr_config, custom_hooks_config=cfg.get('custom_hooks', None), ) # only use the first train workflow workflow = cfg.workflow[:1] assert workflow[0][0] == 'train' return runner.run(data_loaders, cfg.workflow) def main(): args = parse_args() cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # make sure save_root exists if args.save_path and not args.save_path.parent.exists(): raise Exception(f'The save path is {args.save_path}, and directory ' f"'{args.save_path.parent}' do not exist.") # init logger logger = get_root_logger(log_level=cfg.log_level) logger.info('Lr config : \n\n' + pformat(cfg.lr_config, sort_dicts=False) + '\n') by_epoch = True if cfg.runner.type == 'EpochBasedRunner' else False # prepare data loader batch_size = cfg.data.samples_per_gpu * args.ngpus if args.dataset_size is None and by_epoch: from mmcls.datasets.builder import build_dataset dataset_size = len(build_dataset(cfg.data.train)) else: dataset_size = args.dataset_size or batch_size fake_dataset = list(range(dataset_size)) data_loader = DataLoader(fake_dataset, batch_size=batch_size) dataset_info = (f'\nDataset infos:' f'\n - Dataset size: {dataset_size}' f'\n - Samples per GPU: {cfg.data.samples_per_gpu}' f'\n - Number of GPUs: {args.ngpus}' f'\n - Total batch size: {batch_size}') if by_epoch: dataset_info += f'\n - Iterations per epoch: {len(data_loader)}' logger.info(dataset_info) # simulation training process lr_list = simulate_train(data_loader, cfg, by_epoch) plot_curve(lr_list, args, len(data_loader), by_epoch) if __name__ == '__main__': main()