_base_ = [ '../_base_/models/efficientnet_es.py', '../_base_/datasets/imagenet_bs32.py', '../_base_/schedules/imagenet_bs256.py', '../_base_/default_runtime.py', ] # dataset settings train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='EfficientNetRandomCrop', scale=224), dict(type='RandomFlip', prob=0.5, direction='horizontal'), dict(type='PackClsInputs'), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict(type='EfficientNetCenterCrop', crop_size=224), dict(type='PackClsInputs'), ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = dict(dataset=dict(pipeline=test_pipeline)) # NOTE: `auto_scale_lr` is for automatically scaling LR, # USER SHOULD NOT CHANGE ITS VALUES. # base_batch_size = (8 GPUs) x (32 samples per GPU) auto_scale_lr = dict(base_batch_size=256)