Collections: - Name: DenseCL Metadata: Training Data: ImageNet-1k Training Techniques: - SGD with Momentum - Weight Decay Training Resources: 8x V100 GPUs Architecture: - ResNet Paper: Title: Dense contrastive learning for self-supervised visual pre-training URL: https://arxiv.org/abs/2011.09157 README: configs/densecl/README.md Models: - Name: densecl_resnet50_8xb32-coslr-200e_in1k Metadata: Epochs: 200 Batch Size: 256 FLOPs: 4109364224 Parameters: 64850560 Training Data: ImageNet-1k In Collection: DenseCL Results: null Weights: https://download.openmmlab.com/mmselfsup/1.x/densecl/densecl_resnet50_8xb32-coslr-200e_in1k/densecl_resnet50_8xb32-coslr-200e_in1k_20220825-3078723b.pth Config: configs/densecl/densecl_resnet50_8xb32-coslr-200e_in1k.py Downstream: - resnet50_densecl-pre_8xb32-linear-steplr-100e_in1k - Name: resnet50_densecl-pre_8xb32-linear-steplr-100e_in1k Metadata: Epochs: 100 Batch Size: 256 FLOPs: 4109464576 Parameters: 25557032 Training Data: ImageNet-1k In Collection: DenseCL Results: - Task: Image Classification Dataset: ImageNet-1k Metrics: Top 1 Accuracy: 63.5 Weights: https://download.openmmlab.com/mmselfsup/1.x/densecl/densecl_resnet50_8xb32-coslr-200e_in1k/resnet50_linear-8xb32-steplr-100e_in1k/resnet50_linear-8xb32-steplr-100e_in1k_20220825-f0f0a579.pth Config: configs/densecl/benchmarks/resnet50_8xb32-linear-steplr-100e_in1k.py