# Copyright (c) OpenMMLab. All rights reserved. from numbers import Number import numpy as np import torch from torch.nn.functional import one_hot def calculate_confusion_matrix(pred, target): """Calculate confusion matrix according to the prediction and target. Args: pred (torch.Tensor | np.array): The model prediction with shape (N, C). target (torch.Tensor | np.array): The target of each prediction with shape (N, 1) or (N,). Returns: torch.Tensor: Confusion matrix The shape is (C, C), where C is the number of classes. """ if isinstance(pred, np.ndarray): pred = torch.from_numpy(pred) if isinstance(target, np.ndarray): target = torch.from_numpy(target) assert ( isinstance(pred, torch.Tensor) and isinstance(target, torch.Tensor)), \ (f'pred and target should be torch.Tensor or np.ndarray, ' f'but got {type(pred)} and {type(target)}.') # Modified from PyTorch-Ignite num_classes = pred.size(1) pred_label = torch.argmax(pred, dim=1).flatten() target_label = target.flatten() assert len(pred_label) == len(target_label) with torch.no_grad(): indices = num_classes * target_label + pred_label matrix = torch.bincount(indices, minlength=num_classes**2) matrix = matrix.reshape(num_classes, num_classes) return matrix def precision_recall_f1(pred, target, average_mode='macro', thrs=0.): """Calculate precision, recall and f1 score according to the prediction and target. Args: pred (torch.Tensor | np.array): The model prediction with shape (N, C). target (torch.Tensor | np.array): The target of each prediction with shape (N, 1) or (N,). average_mode (str): The type of averaging performed on the result. Options are 'macro' and 'none'. If 'none', the scores for each class are returned. If 'macro', calculate metrics for each class, and find their unweighted mean. Defaults to 'macro'. thrs (Number | tuple[Number], optional): Predictions with scores under the thresholds are considered negative. Default to 0. Returns: tuple: tuple containing precision, recall, f1 score. The type of precision, recall, f1 score is one of the following: +----------------------------+--------------------+-------------------+ | Args | ``thrs`` is number | ``thrs`` is tuple | +============================+====================+===================+ | ``average_mode`` = "macro" | float | list[float] | +----------------------------+--------------------+-------------------+ | ``average_mode`` = "none" | np.array | list[np.array] | +----------------------------+--------------------+-------------------+ """ allowed_average_mode = ['macro', 'none'] if average_mode not in allowed_average_mode: raise ValueError(f'Unsupport type of averaging {average_mode}.') if isinstance(pred, np.ndarray): pred = torch.from_numpy(pred) assert isinstance(pred, torch.Tensor), \ (f'pred should be torch.Tensor or np.ndarray, but got {type(pred)}.') if isinstance(target, np.ndarray): target = torch.from_numpy(target).long() assert isinstance(target, torch.Tensor), \ f'target should be torch.Tensor or np.ndarray, ' \ f'but got {type(target)}.' if isinstance(thrs, Number): thrs = (thrs, ) return_single = True elif isinstance(thrs, tuple): return_single = False else: raise TypeError( f'thrs should be a number or tuple, but got {type(thrs)}.') num_classes = pred.size(1) pred_score, pred_label = torch.topk(pred, k=1) pred_score = pred_score.flatten() pred_label = pred_label.flatten() gt_positive = one_hot(target.flatten(), num_classes) precisions = [] recalls = [] f1_scores = [] for thr in thrs: # Only prediction values larger than thr are counted as positive pred_positive = one_hot(pred_label, num_classes) if thr is not None: pred_positive[pred_score <= thr] = 0 class_correct = (pred_positive & gt_positive).sum(0) precision = class_correct / np.maximum(pred_positive.sum(0), 1.) * 100 recall = class_correct / np.maximum(gt_positive.sum(0), 1.) * 100 f1_score = 2 * precision * recall / np.maximum( precision + recall, torch.finfo(torch.float32).eps) if average_mode == 'macro': precision = float(precision.mean()) recall = float(recall.mean()) f1_score = float(f1_score.mean()) elif average_mode == 'none': precision = precision.detach().cpu().numpy() recall = recall.detach().cpu().numpy() f1_score = f1_score.detach().cpu().numpy() else: raise ValueError(f'Unsupport type of averaging {average_mode}.') precisions.append(precision) recalls.append(recall) f1_scores.append(f1_score) if return_single: return precisions[0], recalls[0], f1_scores[0] else: return precisions, recalls, f1_scores def precision(pred, target, average_mode='macro', thrs=0.): """Calculate precision according to the prediction and target. Args: pred (torch.Tensor | np.array): The model prediction with shape (N, C). target (torch.Tensor | np.array): The target of each prediction with shape (N, 1) or (N,). average_mode (str): The type of averaging performed on the result. Options are 'macro' and 'none'. If 'none', the scores for each class are returned. If 'macro', calculate metrics for each class, and find their unweighted mean. Defaults to 'macro'. thrs (Number | tuple[Number], optional): Predictions with scores under the thresholds are considered negative. Default to 0. Returns: float | np.array | list[float | np.array]: Precision. +----------------------------+--------------------+-------------------+ | Args | ``thrs`` is number | ``thrs`` is tuple | +============================+====================+===================+ | ``average_mode`` = "macro" | float | list[float] | +----------------------------+--------------------+-------------------+ | ``average_mode`` = "none" | np.array | list[np.array] | +----------------------------+--------------------+-------------------+ """ precisions, _, _ = precision_recall_f1(pred, target, average_mode, thrs) return precisions def recall(pred, target, average_mode='macro', thrs=0.): """Calculate recall according to the prediction and target. Args: pred (torch.Tensor | np.array): The model prediction with shape (N, C). target (torch.Tensor | np.array): The target of each prediction with shape (N, 1) or (N,). average_mode (str): The type of averaging performed on the result. Options are 'macro' and 'none'. If 'none', the scores for each class are returned. If 'macro', calculate metrics for each class, and find their unweighted mean. Defaults to 'macro'. thrs (Number | tuple[Number], optional): Predictions with scores under the thresholds are considered negative. Default to 0. Returns: float | np.array | list[float | np.array]: Recall. +----------------------------+--------------------+-------------------+ | Args | ``thrs`` is number | ``thrs`` is tuple | +============================+====================+===================+ | ``average_mode`` = "macro" | float | list[float] | +----------------------------+--------------------+-------------------+ | ``average_mode`` = "none" | np.array | list[np.array] | +----------------------------+--------------------+-------------------+ """ _, recalls, _ = precision_recall_f1(pred, target, average_mode, thrs) return recalls def f1_score(pred, target, average_mode='macro', thrs=0.): """Calculate F1 score according to the prediction and target. Args: pred (torch.Tensor | np.array): The model prediction with shape (N, C). target (torch.Tensor | np.array): The target of each prediction with shape (N, 1) or (N,). average_mode (str): The type of averaging performed on the result. Options are 'macro' and 'none'. If 'none', the scores for each class are returned. If 'macro', calculate metrics for each class, and find their unweighted mean. Defaults to 'macro'. thrs (Number | tuple[Number], optional): Predictions with scores under the thresholds are considered negative. Default to 0. Returns: float | np.array | list[float | np.array]: F1 score. +----------------------------+--------------------+-------------------+ | Args | ``thrs`` is number | ``thrs`` is tuple | +============================+====================+===================+ | ``average_mode`` = "macro" | float | list[float] | +----------------------------+--------------------+-------------------+ | ``average_mode`` = "none" | np.array | list[np.array] | +----------------------------+--------------------+-------------------+ """ _, _, f1_scores = precision_recall_f1(pred, target, average_mode, thrs) return f1_scores def support(pred, target, average_mode='macro'): """Calculate the total number of occurrences of each label according to the prediction and target. Args: pred (torch.Tensor | np.array): The model prediction with shape (N, C). target (torch.Tensor | np.array): The target of each prediction with shape (N, 1) or (N,). average_mode (str): The type of averaging performed on the result. Options are 'macro' and 'none'. If 'none', the scores for each class are returned. If 'macro', calculate metrics for each class, and find their unweighted sum. Defaults to 'macro'. Returns: float | np.array: Support. - If the ``average_mode`` is set to macro, the function returns a single float. - If the ``average_mode`` is set to none, the function returns a np.array with shape C. """ confusion_matrix = calculate_confusion_matrix(pred, target) with torch.no_grad(): res = confusion_matrix.sum(1) if average_mode == 'macro': res = float(res.sum().numpy()) elif average_mode == 'none': res = res.numpy() else: raise ValueError(f'Unsupport type of averaging {average_mode}.') return res