# dataset settings dataset_type = 'CIFAR10' data_preprocessor = dict( num_classes=10, # RGB format normalization parameters mean=[125.307, 122.961, 113.8575], std=[51.5865, 50.847, 51.255], # loaded images are already RGB format to_rgb=False) train_pipeline = [ dict(type='RandomCrop', crop_size=32, padding=4), dict(type='RandomFlip', prob=0.5, direction='horizontal'), dict(type='PackInputs'), ] test_pipeline = [ dict(type='PackInputs'), ] train_dataloader = dict( batch_size=16, num_workers=2, dataset=dict( type=dataset_type, data_root='data/cifar10', split='train', pipeline=train_pipeline), sampler=dict(type='DefaultSampler', shuffle=True), ) val_dataloader = dict( batch_size=16, num_workers=2, dataset=dict( type=dataset_type, data_root='data/cifar10/', split='test', pipeline=test_pipeline), sampler=dict(type='DefaultSampler', shuffle=False), ) val_evaluator = dict(type='Accuracy', topk=(1, )) test_dataloader = val_dataloader test_evaluator = val_evaluator