_base_ = [ '../_base_/models/convnext/convnext-base.py', '../_base_/datasets/imagenet21k_bs128.py', '../_base_/schedules/imagenet_bs1024_adamw_swin.py', '../_base_/default_runtime.py', ] # model setting model = dict(head=dict(num_classes=21841)) # dataset setting data_preprocessor = dict(num_classes=21841) train_dataloader = dict(batch_size=64) # schedule setting optim_wrapper = dict( optimizer=dict(lr=4e-3), clip_grad=dict(max_norm=5.0), ) # NOTE: `auto_scale_lr` is for automatically scaling LR # based on the actual training batch size. # base_batch_size = (32 GPUs) x (128 samples per GPU) auto_scale_lr = dict(base_batch_size=4096)