# accuracy_top-1 : 81.52 accuracy_top-5 : 95.73 _base_ = [ '../_base_/models/tnt_s_patch16_224.py', '../_base_/datasets/imagenet_bs32_pil_resize.py', '../_base_/default_runtime.py' ] # dataset settings data_preprocessor = dict( mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], # convert image from BGR to RGB to_rgb=True, ) test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='ResizeEdge', scale=248, edge='short', backend='pillow', interpolation='bicubic'), dict(type='CenterCrop', crop_size=224), dict(type='PackInputs'), ] train_dataloader = dict(batch_size=64) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = dict(dataset=dict(pipeline=test_pipeline)) # schedule settings optim_wrapper = dict(optimizer=dict(type='AdamW', lr=1e-3, weight_decay=0.05)) param_scheduler = [ # warm up learning rate scheduler dict( type='LinearLR', start_factor=1e-3, by_epoch=True, begin=0, end=5, # update by iter convert_to_iter_based=True), # main learning rate scheduler dict(type='CosineAnnealingLR', T_max=295, by_epoch=True, begin=5, end=300) ] train_cfg = dict(by_epoch=True, max_epochs=300, val_interval=1) val_cfg = dict() test_cfg = dict() # NOTE: `auto_scale_lr` is for automatically scaling LR # based on the actual training batch size. # base_batch_size = (16 GPUs) x (64 samples per GPU) auto_scale_lr = dict(base_batch_size=1024)