# data settings data_preprocessor = dict( mean=[122.770938, 116.7460125, 104.09373615], std=[68.5005327, 66.6321579, 70.32316305], to_rgb=True, ) train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='RandomResizedCrop', scale=384, interpolation='bicubic', backend='pillow'), dict( type='PackInputs', algorithm_keys=['question', 'gt_answer', 'gt_answer_weight'], meta_keys=['question_id', 'image_id'], ), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='Resize', scale=(480, 480), interpolation='bicubic', backend='pillow'), dict( type='CleanCaption', keys=['question'], ), dict( type='PackInputs', algorithm_keys=['question', 'gt_answer', 'gt_answer_weight'], meta_keys=['question_id', 'image_id'], ), ] train_dataloader = dict( batch_size=16, num_workers=8, dataset=dict( type='COCOVQA', data_root='data/coco', data_prefix='train2014', question_file= 'annotations/okvqa_OpenEnded_mscoco_train2014_questions.json', ann_file='annotations/okvqa_mscoco_train2014_annotations.json', pipeline=train_pipeline), sampler=dict(type='DefaultSampler', shuffle=True), persistent_workers=True, drop_last=True, ) val_dataloader = dict( batch_size=16, num_workers=8, dataset=dict( type='COCOVQA', data_root='data/coco', data_prefix='val2014', question_file= 'annotations/okvqa_OpenEnded_mscoco_val2014_questions.json', ann_file='annotations/okvqa_mscoco_val2014_annotations.json', pipeline=test_pipeline), sampler=dict(type='DefaultSampler', shuffle=False), persistent_workers=True, ) val_evaluator = dict(type='VQAAcc') test_dataloader = val_dataloader test_evaluator = val_evaluator