# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp from collections import OrderedDict import mmengine import torch from mmengine.runner import CheckpointLoader def convert_glip(ckpt): def correct_unfold_reduction_order(x): out_channel, in_channel = x.shape x = x.reshape(out_channel, 4, in_channel // 4) x = x[:, [0, 2, 1, 3], :].transpose(1, 2).reshape(out_channel, in_channel) return x def correct_unfold_norm_order(x): in_channel = x.shape[0] x = x.reshape(4, in_channel // 4) x = x[[0, 2, 1, 3], :].transpose(0, 1).reshape(in_channel) return x new_ckpt = OrderedDict() for k, v in list(ckpt.items()): if 'language_backbone' in k or 'backbone' not in k or 'fpn' in k: continue new_v = v new_k = k.replace('body.', '') new_k = new_k.replace('module.', '') if new_k.startswith('backbone.layers'): new_k = new_k.replace('backbone.layers', 'backbone.stages') if 'mlp' in new_k: new_k = new_k.replace('mlp.fc1', 'ffn.layers.0.0') new_k = new_k.replace('mlp.fc2', 'ffn.layers.1') elif 'attn' in new_k: new_k = new_k.replace('attn', 'attn.w_msa') elif 'patch_embed' in k: new_k = new_k.replace('proj', 'projection') elif 'downsample' in new_k: if 'reduction.' in k: new_v = correct_unfold_reduction_order(new_v) elif 'norm.' in k: new_v = correct_unfold_norm_order(new_v) new_ckpt[new_k] = new_v return new_ckpt def main(): parser = argparse.ArgumentParser( description='Convert keys in pretrained glip models to mmcls style.') parser.add_argument('src', help='src model path or url') # The dst path must be a full path of the new checkpoint. parser.add_argument('dst', help='save path') args = parser.parse_args() checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu') if 'model' in checkpoint: state_dict = checkpoint['model'] else: state_dict = checkpoint weight = convert_glip(state_dict) mmengine.mkdir_or_exist(osp.dirname(args.dst)) torch.save(weight, args.dst) print('Done!!') if __name__ == '__main__': main()