# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp from collections import OrderedDict import mmengine import torch from mmengine.runner import CheckpointLoader def convert_revvit(ckpt): new_ckpt = OrderedDict() for k, v in list(ckpt.items()): new_v = v if k.startswith('head.projection'): new_k = k.replace('head.projection', 'head.fc') new_ckpt[new_k] = new_v continue elif k.startswith('patch_embed'): if 'proj.' in k: new_k = k.replace('proj.', 'projection.') else: new_k = k elif k.startswith('rev_backbone'): new_k = k.replace('rev_backbone.', '') if 'F.norm' in k: new_k = new_k.replace('F.norm', 'ln1') elif 'G.norm' in k: new_k = new_k.replace('G.norm', 'ln2') elif 'F.attn' in k: new_k = new_k.replace('F.attn', 'attn') elif 'G.mlp.fc1' in k: new_k = new_k.replace('G.mlp.fc1', 'ffn.layers.0.0') elif 'G.mlp.fc2' in k: new_k = new_k.replace('G.mlp.fc2', 'ffn.layers.1') elif k.startswith('norm'): new_k = k.replace('norm', 'ln1') else: new_k = k if not new_k.startswith('head'): new_k = 'backbone.' + new_k new_ckpt[new_k] = new_v tmp_weight_dir = [] tmp_bias_dir = [] final_ckpt = OrderedDict() for k, v in list(new_ckpt.items()): if 'attn.q.weight' in k: tmp_weight_dir.append(v) elif 'attn.k.weight' in k: tmp_weight_dir.append(v) elif 'attn.v.weight' in k: tmp_weight_dir.append(v) new_k = k.replace('attn.v.weight', 'attn.qkv.weight') final_ckpt[new_k] = torch.cat(tmp_weight_dir, dim=0) tmp_weight_dir = [] elif 'attn.q.bias' in k: tmp_bias_dir.append(v) elif 'attn.k.bias' in k: tmp_bias_dir.append(v) elif 'attn.v.bias' in k: tmp_bias_dir.append(v) new_k = k.replace('attn.v.bias', 'attn.qkv.bias') final_ckpt[new_k] = torch.cat(tmp_bias_dir, dim=0) tmp_bias_dir = [] else: final_ckpt[k] = v return final_ckpt def main(): parser = argparse.ArgumentParser( description='Convert keys in pretrained revvit' ' models to mmpretrain style.') parser.add_argument('src', help='src model path or url') # The dst path must be a full path of the new checkpoint. parser.add_argument('dst', help='save path') args = parser.parse_args() checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu') if 'model_state' in checkpoint: state_dict = checkpoint['model_state'] else: state_dict = checkpoint weight = convert_revvit(state_dict) mmengine.mkdir_or_exist(osp.dirname(args.dst)) torch.save(weight, args.dst) print('Done!!') if __name__ == '__main__': main()