# data settings data_preprocessor = dict( mean=[122.770938, 116.7460125, 104.09373615], std=[68.5005327, 66.6321579, 70.32316305], to_rgb=True, ) train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='RandomApply', transforms=[ dict( type='ColorJitter', brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1, backend='cv2') ], prob=0.5), dict( type='mmdet.RandomCrop', crop_type='relative_range', crop_size=(0.8, 0.8), allow_negative_crop=False), dict( type='RandomChoiceResize', scales=[(384, 384), (360, 360), (344, 344), (312, 312), (300, 300), (286, 286), (270, 270)], keep_ratio=False), dict( type='RandomTranslatePad', size=384, aug_translate=True, ), dict(type='CleanCaption', keys='text'), dict( type='PackInputs', algorithm_keys=['text', 'gt_bboxes', 'scale_factor'], meta_keys=['image_id'], ), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='Resize', scale=(384, 384), interpolation='bicubic', backend='pillow'), dict(type='CleanCaption', keys='text'), dict( type='PackInputs', algorithm_keys=['text', 'gt_bboxes', 'scale_factor'], meta_keys=['image_id'], ), ] train_dataloader = dict( batch_size=16, num_workers=8, dataset=dict( type='RefCOCO', data_root='data/coco', data_prefix='train2014', ann_file='refcoco/instances.json', split_file='refcoco/refs(unc).p', split='train', pipeline=train_pipeline), sampler=dict(type='DefaultSampler', shuffle=True), drop_last=True, ) val_dataloader = dict( batch_size=16, num_workers=8, dataset=dict( type='RefCOCO', data_root='data/coco', data_prefix='train2014', ann_file='refcoco/instances.json', split_file='refcoco/refs(unc).p', split='val', pipeline=test_pipeline), sampler=dict(type='DefaultSampler', shuffle=False), ) val_evaluator = dict(type='VisualGroundingMetric') test_dataloader = dict( batch_size=16, num_workers=8, dataset=dict( type='RefCOCO', data_root='data/coco', data_prefix='train2014', ann_file='refcoco/instances.json', split_file='refcoco/refs(unc).p', split='testA', # or 'testB' pipeline=test_pipeline), sampler=dict(type='DefaultSampler', shuffle=False), ) test_evaluator = val_evaluator