# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp from collections import OrderedDict import mmengine import torch from mmengine.runner import CheckpointLoader def correct_unfold_reduction_order(x: torch.Tensor): out_channel, in_channel = x.shape x = x.reshape(out_channel, 4, in_channel // 4) x = x[:, [0, 2, 1, 3], :].transpose(1, 2).reshape(out_channel, in_channel) return x def correct_unfold_norm_order(x): in_channel = x.shape[0] x = x.reshape(4, in_channel // 4) x = x[[0, 2, 1, 3], :].transpose(0, 1).reshape(in_channel) return x def convert_mixmim(ckpt): new_ckpt = OrderedDict() for k, v in list(ckpt.items()): new_v = v if k.startswith('patch_embed'): new_k = k.replace('proj', 'projection') elif k.startswith('layers'): if 'norm1' in k: new_k = k.replace('norm1', 'ln1') elif 'norm2' in k: new_k = k.replace('norm2', 'ln2') elif 'mlp.fc1' in k: new_k = k.replace('mlp.fc1', 'ffn.layers.0.0') elif 'mlp.fc2' in k: new_k = k.replace('mlp.fc2', 'ffn.layers.1') else: new_k = k elif k.startswith('norm') or k.startswith('absolute_pos_embed'): new_k = k elif k.startswith('head'): new_k = k.replace('head.', 'head.fc.') else: raise ValueError # print(new_k) if not new_k.startswith('head'): new_k = 'backbone.' + new_k if 'downsample' in new_k: print('Covert {} in PatchMerging from timm to mmcv format!'.format( new_k)) if 'reduction' in new_k: new_v = correct_unfold_reduction_order(new_v) elif 'norm' in new_k: new_v = correct_unfold_norm_order(new_v) new_ckpt[new_k] = new_v return new_ckpt def main(): parser = argparse.ArgumentParser( description='Convert keys in pretrained mixmim ' 'models to mmpretrain style.') parser.add_argument('src', help='src model path or url') # The dst path must be a full path of the new checkpoint. parser.add_argument('dst', help='save path') args = parser.parse_args() checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu') if 'model' in checkpoint: state_dict = checkpoint['model'] else: state_dict = checkpoint weight = convert_mixmim(state_dict) # weight = convert_official_mixmim(state_dict) mmengine.mkdir_or_exist(osp.dirname(args.dst)) torch.save(weight, args.dst) print('Done!!') if __name__ == '__main__': main()