import argparse import mmcv from mmcv import Config, DictAction from mmcls.datasets import build_dataset def parse_args(): parser = argparse.ArgumentParser(description='Evaluate metric of the ' 'results saved in pkl format') parser.add_argument('config', help='Config of the model') parser.add_argument('pkl_results', help='Results in pickle format') parser.add_argument( '--metrics', type=str, nargs='+', help='Evaluation metrics, which depends on the dataset, e.g., ' '"accuracy", "precision", "recall" and "support".') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--eval-options', nargs='+', action=DictAction, help='custom options for evaluation, the key-value pair in xxx=yyy ' 'format will be kwargs for dataset.evaluate() function') args = parser.parse_args() return args def main(): args = parse_args() cfg = Config.fromfile(args.config) assert args.metrics, ( 'Please specify at least one metric the argument "--metrics".') if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # import modules from string list. if cfg.get('custom_imports', None): from mmcv.utils import import_modules_from_strings import_modules_from_strings(**cfg['custom_imports']) cfg.data.test.test_mode = True dataset = build_dataset(cfg.data.test) outputs = mmcv.load(args.pkl_results) pred_score = outputs['class_scores'] kwargs = {} if args.eval_options is None else args.eval_options eval_kwargs = cfg.get('evaluation', {}).copy() # hard-code way to remove EvalHook args for key in [ 'interval', 'tmpdir', 'start', 'gpu_collect', 'save_best', 'rule' ]: eval_kwargs.pop(key, None) eval_kwargs.update(dict(metric=args.metrics, **kwargs)) print(dataset.evaluate(pred_score, **eval_kwargs)) if __name__ == '__main__': main()